Options
Salditt, Tim
Loading...
Preferred name
Salditt, Tim
Official Name
Salditt, Tim
Alternative Name
Salditt, T.
Main Affiliation
Institut für Röntgenphysik
Now showing 1 - 10 of 345
2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","11552"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","11569"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Hagemann, Johannes"],["dc.contributor.author","Robisch, Anna-Lena"],["dc.contributor.author","Luke, D. R."],["dc.contributor.author","Homann, C."],["dc.contributor.author","Hohage, Thorsten"],["dc.contributor.author","Cloetens, Peter"],["dc.contributor.author","Suhonen, H."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:46:15Z"],["dc.date.available","2017-09-07T11:46:15Z"],["dc.date.issued","2014"],["dc.description.abstract","We illustrate the errors inherent in the conventional empty beam correction of full field X-ray propagation imaging, i.e. the division of intensities in the detection plane measured with an object in the beam by the intensity pattern measured without the object, i.e. the empty beam intensity pattern. The error of this conventional approximation is controlled by the ratio of the source size to the smallest feature in the object, as is shown by numerical simulation. In a second step, we investigate how to overcome the flawed empty beam division by simultaneous reconstruction of the probing wavefront (probe) and of the object, based on measurements in several detection planes (multi-projection approach). The algorithmic scheme is demonstrated numerically and experimentally, using the defocus wavefront of the hard X-ray nanoprobe setup at the European Synchrotron Radiation Facility (ESRF). (C) 2014 Optical Society of America"],["dc.identifier.doi","10.1364/OE.22.011552"],["dc.identifier.fs","604845"],["dc.identifier.gro","3142122"],["dc.identifier.isi","000336957700017"],["dc.identifier.pmid","24921276"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12635"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4789"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: [SFB 755]"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1094-4087"],["dc.relation.orgunit","Institut für Numerische und Angewandte Mathematik"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Fakultät für Mathematik und Informatik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.gro","x-ray imaging"],["dc.title","Reconstruction of wave front and object for inline holography from a set of detection planes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Conference Abstract [["dc.bibliographiccitation.firstpage","35"],["dc.bibliographiccitation.journal","Acta Physiologica"],["dc.bibliographiccitation.lastpage","36"],["dc.bibliographiccitation.volume","213"],["dc.contributor.author","Keppeler, Daniel"],["dc.contributor.author","Jeschke, Marcus"],["dc.contributor.author","Wrobel, C."],["dc.contributor.author","Hoch, Gerhard"],["dc.contributor.author","Gossler, Christian"],["dc.contributor.author","Schwarz, U. T."],["dc.contributor.author","Ruther, P."],["dc.contributor.author","Schwaerzle, M."],["dc.contributor.author","Hessler, R."],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Kügler, Sebastian"],["dc.contributor.author","Moser, Tobias"],["dc.date.accessioned","2018-11-07T09:59:50Z"],["dc.date.available","2018-11-07T09:59:50Z"],["dc.date.issued","2015"],["dc.identifier.isi","000362554200073"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37681"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.title","In vivo application of optogenetics in the auditory system"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details WOS2013Journal Article Research Paper [["dc.bibliographiccitation.artnumber","268101"],["dc.bibliographiccitation.issue","26"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","111"],["dc.contributor.author","Khakhulin, D."],["dc.contributor.author","Wulff, M."],["dc.contributor.author","Reusch, Tobias"],["dc.contributor.author","Mai, Dong-Du"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-11-05T15:05:25Z"],["dc.date.available","2020-11-05T15:05:25Z"],["dc.date.issued","2013"],["dc.description.abstract","We study the nonequilibrium shape fluctuations in fluorescence labeled phospholipid multibilayers composed of the model lipid DOPC and the well-known lipid dye Texas red, driven out of equilibrium by short laser pulses. The temporal evolution of the lipid bilayer undulations after excitation was recorded by time resolved x-ray diffraction. Already at moderate peak intensities (P-p <= 10(5) W/cm(2)), pulsed laser illumination leads to significant changes of the undulation modes in a well-defined lateral wavelength band. The observed phenomena evolve on nano-to microsecond time scales after optical excitation, and can be described in terms of a modulation instability in the lipid multilamellar stack."],["dc.identifier.doi","10.1103/PhysRevLett.111.268101"],["dc.identifier.gro","3142229"],["dc.identifier.isi","000331934500020"],["dc.identifier.pmid","24483815"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10030"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68467"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352.6"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0/"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","membrane biophysics"],["dc.title","Nonequilibrium Collective Dynamics in Photoexcited Lipid Multilayers by Time Resolved Diffuse X-Ray Scattering"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS1995Journal Article Research Paper [["dc.bibliographiccitation.firstpage","16855"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Physical Review B"],["dc.bibliographiccitation.lastpage","16863"],["dc.bibliographiccitation.volume","52"],["dc.contributor.author","Rauscher, M"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Spohn, H."],["dc.date.accessioned","2017-09-07T11:51:11Z"],["dc.date.available","2017-09-07T11:51:11Z"],["dc.date.issued","1995"],["dc.description.abstract","The specular and nonspecular intensity of x rays scattered from a rough surface with fluctuations in the electron density is calculated in the distorted-wave Born approximation. The contributions to the nonspecular intensity of roughness and density fluctuations can be separated. The structure factor is given by a convolution integral of the Fourier transform of the density correlation function. Special geometries of density fluctuations are discussed."],["dc.identifier.doi","10.1103/PhysRevB.52.16855"],["dc.identifier.gro","3144669"],["dc.identifier.isi","A1995TN30900079"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2318"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0163-1829"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray scattering"],["dc.title","Small-angle x-ray scattering under grazing incidence: The cross section in the distorted-wave Born approximation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI WOS2002Journal Article Research Paper [["dc.bibliographiccitation.firstpage","230"],["dc.bibliographiccitation.issue","5579"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","234"],["dc.bibliographiccitation.volume","297"],["dc.contributor.author","Pfeiffer, Felix"],["dc.contributor.author","David, Christian"],["dc.contributor.author","Burghammer, Manfred"],["dc.contributor.author","Riekel, C."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:45:19Z"],["dc.date.available","2017-09-07T11:45:19Z"],["dc.date.issued","2002"],["dc.description.abstract","We show that resonant coupling of synchrotron beams into suitable nanostructures can be used for the generation of coherent x-ray point sources. A two-dimensionally con ning x-ray waveguide structure has been fabricated by e-beam lithography. By shining a parallel undulator beam onto the structure, a discrete set of resonant modes can be excited in the dielectric cavity, depending on the two orthogonal coupling angles between the beam and the waveguide interfaces. The resonant excitation of the modes is evidenced from the characteristic set of coupling angles as well as the observed far-field pattern. The x-ray nanostructure may be used as coherent x-ray point sources with a beam cross section in the nanometer range."],["dc.identifier.doi","10.1126/science.1071994"],["dc.identifier.gro","3144189"],["dc.identifier.isi","000176738100035"],["dc.identifier.pmid","12114620"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1785"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0036-8075"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.title","Two-dimensional x-ray waveguides and point sources"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Book Chapter [["dc.bibliographiccitation.firstpage","43"],["dc.bibliographiccitation.lastpage","86"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Komorowski, Karlo"],["dc.contributor.author","Frank, Kilian"],["dc.contributor.editor","Nieh, Mu-Ping"],["dc.contributor.editor","Heberle, Frederick A."],["dc.contributor.editor","Katsaras, John"],["dc.date.accessioned","2020-03-03T08:14:53Z"],["dc.date.available","2020-03-03T08:14:53Z"],["dc.date.issued","2019"],["dc.description.abstract","In this chapter, we describe X-ray diffraction analysis of lipid model membranes, including fundamentals of experiment and analysis. We start with solid-supported single bilayers and monolayers, then discuss solid-supported multilamellar stacks, and finally vesicles in solution. For oriented membranes, we discuss specular and nonspecular reflectivity, as well as grazing incidence diffraction, and for vesicles we discuss small-angle X-ray scattering. In each case, illustrative examples of current applications are given. The chapter closes with an outlook on free electron laser sources and new opportunities for research on lipid model membranes and biomembranes."],["dc.identifier.doi","10.1515/9783110544657-002"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63066"],["dc.language.iso","en"],["dc.publisher","De Gruyter"],["dc.publisher.place","Berlin, Boston"],["dc.relation.eisbn","978-3-11-054465-7"],["dc.relation.ispartof","Characterization of Biological Membranes: Structure and Dynamics"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","membrane biophysics"],["dc.title","X-ray structure analysis of lipid membrane systems: solid-supported bilayers, bilayer stacks, and vesicles"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021-12-01Journal Article Research Paper [["dc.bibliographiccitation.firstpage","41932"],["dc.bibliographiccitation.issue","25"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.volume","29"],["dc.contributor.author","Soltau, Jakob"],["dc.contributor.author","Lohse, Leon Merten"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2021-12-02T15:07:31Z"],["dc.date.available","2021-12-02T15:07:31Z"],["dc.date.issued","2021-12-01"],["dc.description.abstract","Recent progress in nanofabrication, namely of multilayer optics, and the constructionof coherent hard x-ray sources has enabled high resolution x-ray microscopy with large numericalaperture optics for small focal spot sizes. Sub-10 nm and even sub-5 nm focal spot sizes havealready been achieved using multilayer optics such as multilayer Laue lenses and multilayerzone plates. However these optics can not be described by the kinematic theory given theirextreme aspect-ratio between the depth (thickness) and the layer width. Moreover, the numericalsimulation of these optics is challenging, and the absence of an accessible numerical frameworkinhibits further progress in their design and utilization. Here, we simulate the propagation of x-raywavefields within and behind optical multilayer elements using a finite-difference propagationmethod. We show that the method offers high accuracy at reasonable computational cost. Weinvestigate how small focal spot sizes and highest diffraction efficiency of multilayer opticscan be achieved, considering volume diffraction effects such as waveguiding and Pendellösung.Finally, we show the simulation of a novel imaging scheme, allowing for a detailed study ofimage formation and the development of customized phase retrieval schemes."],["dc.identifier.doi","10.1364/OE.445300"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94973"],["dc.relation.issn","1094-4087"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.title","Finite-difference propagation for the imulation of x-ray multilayer optics"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2011Conference Paper [["dc.bibliographiccitation.seriesnr","1355"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Metzger, T. H."],["dc.contributor.author","Peisl, J."],["dc.contributor.author","Morawe, C. H."],["dc.contributor.author","Zabel, H."],["dc.date.accessioned","2017-09-07T11:54:11Z"],["dc.date.available","2017-09-07T11:54:11Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1557/proc-355-269"],["dc.identifier.gro","3145131"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2833"],["dc.notes.intern","Crossref Import"],["dc.notes.status","public"],["dc.publisher","Cambridge University Press (CUP)"],["dc.publisher.place","New York"],["dc.relation.conference","Symposium JJ, Biological Hybrid Materials for Life Sciences"],["dc.relation.crisseries","Materials Research Society Symposium Proceedings"],["dc.relation.eventend","2011-04-29"],["dc.relation.eventlocation","San Francisco, Calif."],["dc.relation.eventstart","2011-04-25"],["dc.relation.isbn","978-1-62748-200-4"],["dc.relation.ispartof","Biological hybrid materials for life sciences"],["dc.relation.ispartofseries","Materials Research Society symposium proceedings; 1355"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray scattering"],["dc.title","Interface Morphology of RF-Sputtered NB/AL2O3 Multilayers Studied by X-Ray Reflectivity and Diffuse Scattering"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article Research Paper [["dc.bibliographiccitation.artnumber","073033"],["dc.bibliographiccitation.journal","New Journal of Physics"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Robisch, Anna-Lena"],["dc.contributor.author","Kroeger, K."],["dc.contributor.author","Rack, A."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:43:40Z"],["dc.date.available","2017-09-07T11:43:40Z"],["dc.date.issued","2015"],["dc.description.abstract","Image reconstruction of in-line holography depends crucially on the probing wave front used to illuminate an object. Aberrations inherent to the illumination can mix with the features imposed by the object. Conventional raw data processing methods rely on the division of the measured hologram by the intensity profile of the probe and are not able to fully eliminate artifacts caused by the illumination. Here we present a generalized ptychography approach to simultaneously reconstruct object and probe in the optical near-field. Combining the ideas of ptychographic lateral shifts of the object with variations of the propagation distance by longitudinal shifts, simultaneous reconstruction of object and probe was achieved equally well for a highly aberrated and a mildly disturbed probe without the need for an additional wave front diffuser. The method overcomes the image deterioration by a non-ideal probe and at the same time any restrictions due to linearization of the object's transmission function or the Fresnel propagator. The method is demonstrated experimentally using visible light and hard x-rays, in both parallel beam and cone beam geometry, which is relevant for high resolution x-ray imaging. It also opens up a new approach to characterize extended wave fronts by phase retrieval."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1088/1367-2630/17/7/073033"],["dc.identifier.gro","3141859"],["dc.identifier.isi","000359135100006"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12453"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1867"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1367-2630"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY 3.0"],["dc.subject.gro","x-ray imaging"],["dc.title","Near-field ptychography using lateral and longitudinal shifts"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","9842"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","9859"],["dc.bibliographiccitation.volume","28"],["dc.contributor.author","Lohse, L. M."],["dc.contributor.author","Vassholz, M."],["dc.contributor.author","Töpperwien, M."],["dc.contributor.author","Jentschke, T."],["dc.contributor.author","Bergamaschi, A."],["dc.contributor.author","Chiriotti, S."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-12-10T18:42:02Z"],["dc.date.available","2020-12-10T18:42:02Z"],["dc.date.issued","2020"],["dc.description.abstract","A main challenge in x-ray µCT with laboratory radiation derives from the broad spectral content, which in contrast to monochromatic synchrotron radiation gives rise to reconstruction artifacts and impedes quantitative reconstruction. Due to the low spectral brightness of these sources, monochromatization is unfavorable and parallel recording of a broad bandpath is practically indispensable. While conventional CT sums up all spectral components into a single detector value, spectral CT discriminates the data in several spectral bins. Here we show that a new generation of charge integrating and interpolating pixel detectors is ideally suited to implement spectral CT with a resolution in the range of 10 µm. We find that the information contained in several photon energy bins largely facilitates automated classification of materials, as demonstrated for of a mouse cochlea. Bones, soft tissues, background and metal implant materials are discriminated automatically. Importantly, this includes taking a better account of phase contrast effects, based on tailoring reconstruction parameters to specific energy bins."],["dc.identifier.doi","10.1364/OE.385389"],["dc.identifier.eissn","1094-4087"],["dc.identifier.pmid","32225584"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17771"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77783"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation.issn","1094-4087"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","biomedical tomography"],["dc.title","Spectral µCT with an energy resolving and interpolating pixel detector"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC