Now showing 1 - 10 of 13
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","227"],["dc.bibliographiccitation.journal","Journal of Synchrotron Radiation"],["dc.bibliographiccitation.lastpage","236"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Wilbrandt, P. J."],["dc.contributor.author","Sprung, Michael"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:48:58Z"],["dc.date.available","2017-09-07T11:48:58Z"],["dc.date.issued","2012"],["dc.description.abstract","The propagation of hard X-ray synchrotron beams in waveguides with guiding layer diameters in the 9-35 nm thickness range has been studied. The planar waveguide structures consist of an optimized two-component cladding. The presented fabrication method is suitable for short and leak-proof waveguide slices with lengths (along the optical axis) in the sub-500 mu m range, adapted for optimized transmission at photon energies of 11.5-18 keV. A detailed comparison between finite-difference simulations of waveguide optics and the experimental results is presented, concerning transmission, divergence of the waveguide exit beam, as well as the angular acceptance. In a second step, two crossed waveguides have been used to create a quasi-point source for propagation-based X-ray imaging at the new nano-focus endstation of the P10 coherence beamline at Petra III. By inverting the measured Fraunhofer diffraction pattern by an iterative error-reduction algorithm, a two-dimensional focus of 10 nm x 10 nm is obtained. Finally, holographic imaging of a lithographic test structure based on this optical system is demonstrated."],["dc.identifier.doi","10.1107/S0909049511051983"],["dc.identifier.gro","3142574"],["dc.identifier.isi","000300571300012"],["dc.identifier.pmid","22338684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8940"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0909-0495"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY-NC 2.0"],["dc.subject.gro","x-ray optics"],["dc.title","Sub-10 nm beam confinement by X-ray waveguides: design, fabrication and characterization of optical properties"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Conference Paper
    [["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Krüger, Sven P"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Mai, Dong-Du"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Hartmann, Britta"],["dc.contributor.author","Sprung, Michael"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","McNulty, Ian"],["dc.contributor.author","Eyberger, Catherine"],["dc.contributor.author","Lai, Barry"],["dc.date.accessioned","2017-09-07T11:54:07Z"],["dc.date.available","2017-09-07T11:54:07Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1063/1.3625313"],["dc.identifier.gro","3145117"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2818"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","public"],["dc.publisher","AIP Publishing"],["dc.publisher.place","Melville, NY"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.conference","10th International Conference on X-Ray Microscopy"],["dc.relation.eventend","2010-08-20"],["dc.relation.eventlocation","Chicago, Illinois"],["dc.relation.eventstart","2010-08-15"],["dc.relation.isbn","0-7354-0925-0"],["dc.relation.isbn","978-0-7354-0925-5"],["dc.relation.ispartof","The 10th International Conference on X-Ray Microscopy"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","The Göttingen Holography Endstation of Beamline P10 at PETRA III∕DESY"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","035008"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","New Journal of Physics"],["dc.bibliographiccitation.volume","12"],["dc.contributor.affiliation","Giewekemeyer, K;"],["dc.contributor.affiliation","Neubauer, H;"],["dc.contributor.affiliation","Kalbfleisch, S;"],["dc.contributor.affiliation","Krüger, S P;"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:46:08Z"],["dc.date.available","2017-09-07T11:46:08Z"],["dc.date.issued","2010"],["dc.date.updated","2022-02-09T21:48:01Z"],["dc.description.abstract","We report on lensless nanoscale imaging using x-ray waveguides as ultra-small sources for quasi-point-like illumination. We first give a brief account of the basic optical setup, an overview of the progress in waveguide fabrication and characterization, as well as the basics of image formation. We then compare one-step holographic and iterative ptychographic reconstruction, both for simulated and experimental data collected on samples illuminated by waveguided beams. We demonstrate that scanning the sample with partial overlap can substantially improve reconstruction quality in holographic imaging, and that divergent beams make efficient use of the limited dynamic range of current detectors, regardless of the reconstruction scheme. Among different experimental settings presented, smallest source dimensions of 29 nm (horizontal) x 17 nm have been achieved, using multi-modal interference effects. These values have been determined by ptychographic reconstruction of a Ta test structure at 17.5 keV and have been corroborated by simulations of field propagation inside the waveguide."],["dc.identifier.doi","10.1088/1367-2630/12/3/035008"],["dc.identifier.eissn","1367-2630"],["dc.identifier.fs","568205"],["dc.identifier.gro","3142948"],["dc.identifier.isi","000276349600007"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6673"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/408"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1367-2630"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","Holographic and diffractive x-ray imaging using waveguides as quasi-point sources"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Applied Physics A: Materials Science & Processing"],["dc.bibliographiccitation.lastpage","12"],["dc.bibliographiccitation.volume","91"],["dc.contributor.author","Kohlstedt, A."],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Reiche, M."],["dc.contributor.author","Goesele, U."],["dc.contributor.author","Lima, E."],["dc.contributor.author","Willmott, P."],["dc.date.accessioned","2017-09-07T11:48:45Z"],["dc.date.available","2017-09-07T11:48:45Z"],["dc.date.issued","2008"],["dc.description.abstract","The fabrication of two-dimensionally confining X-ray waveguides enables the generation of nanoscopic X-ray beams. First applications of such waveguides for lens-less holographic imaging have already been demonstrated, but were limited by the fabrication methods and the design. To overcome these limitations, we present here the fabrication process for a second generation of X-ray waveguide with air or vacuum as guiding channel, based on e-beam lithography, ion etching and subsequent wafer bonding. This is a first step towards waveguides fulfilling requirements of high transmission and high confinement, since the process can be scaled down to smaller channel dimensions from the present structures. We address the structuring method used and present results of first X-ray characterization at synchrotron beamlines, under two entirely different beam settings, corresponding to the coupling of a coherent beam and an incoherent beam."],["dc.identifier.doi","10.1007/s00339-007-4374-1"],["dc.identifier.gro","3143319"],["dc.identifier.isi","000253127900002"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/3506"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/820"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0947-8396"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.ddc","530"],["dc.subject.gro","x-ray optics"],["dc.title","Two-dimensional X-ray waveguides: fabrication by wafer-bonding process and characterization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2010Conference Paper
    [["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Krüger, Sven P"],["dc.contributor.author","Hartmann, Britta"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Sprung, Michael"],["dc.contributor.author","Leupold, O."],["dc.contributor.author","Siewert, F."],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Garrett, R."],["dc.contributor.author","Gentle, I."],["dc.contributor.author","Nugent, K."],["dc.contributor.author","Wilkins, S."],["dc.date.accessioned","2017-09-07T11:54:07Z"],["dc.date.available","2017-09-07T11:54:07Z"],["dc.date.issued","2010"],["dc.identifier.doi","10.1063/1.3463233"],["dc.identifier.gro","3145119"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2820"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","public"],["dc.publisher","AIP Publishing"],["dc.publisher.place","Melville, NY"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.conference","10th International Conference on Synchrotron Radiation Instrumentation"],["dc.relation.eventend","2009-10-02"],["dc.relation.eventlocation","Melbourne, Australia"],["dc.relation.eventstart","2009-09-27"],["dc.relation.isbn","978-0-7354-0782-4"],["dc.relation.ispartof","SRI 2009: the 10th International Conference on Synchrotron Radiation Instrumentation"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","The holography endstation of beamline P10 at PETRA III"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1173"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Synchrotron Radiation"],["dc.bibliographiccitation.lastpage","1180"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Robisch, Anna-Lena"],["dc.contributor.author","Soltau, Jakob"],["dc.contributor.author","Eckermann, Marina"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Carbone, Dina"],["dc.contributor.author","Johansson, Ulf"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-12-10T18:25:59Z"],["dc.date.available","2020-12-10T18:25:59Z"],["dc.date.issued","2019"],["dc.description.abstract","The focusing and coherence properties of the NanoMAX Kirkpatrick–Baez mirror system at the fourth-generation MAX IV synchrotron in Lund have been characterized. The direct measurement of nano-focused X-ray beams is possible by scanning of an X-ray waveguide, serving basically as an ultra-thin slit. In quasi-coherent operation, beam sizes of down to 56 nm (FWHM, horizontal direction) can be achieved. Comparing measured Airy-like fringe patterns with simulations, the degree of coherence"],["dc.identifier.doi","10.1107/S1600577519003886"],["dc.identifier.issn","1600-5775"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16741"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75900"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation.issn","1600-5775"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.gro","x-ray optics"],["dc.title","Focus characterization of the NanoMAX Kirkpatrick–Baez mirror system"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9656"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","9675"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Sprung, Michael"],["dc.date.accessioned","2020-11-05T15:05:24Z"],["dc.date.available","2020-11-05T15:05:24Z"],["dc.date.issued","2011"],["dc.description.abstract","We have studied the spatial coherence properties of a nano-focused x-ray beam by grating (Talbot) interferometry in projection geometry. The beam is focused by a fixed curvature mirror system optimized for high flux density under conditions of partial coherence. The spatial coherence of the divergent exit wave emitted from the mirror focus is measured by Talbot interferometry The results are compared to numerical calculations of coherence propagation. In view of imaging applications, the magnified in-line image of a test pattern formed under conditions of partial coherence is analyzed quantitatively. Finally, additional coherence filtering by use of x-ray waveguides is demonstrated. By insertion of x-ray waveguides, the beam diameter can be reduced from typical values of 200 nm to values below 15 nm. In proportion to the reduction in the focal spot size, the numerical aperture (NA) of the projection imaging system is increased, as well as the coherence length, as quantified by grating interferometry. (C) 2011 Optical Society of America"],["dc.identifier.doi","10.1364/OE.19.009656"],["dc.identifier.gro","3142728"],["dc.identifier.isi","000290490200090"],["dc.identifier.pmid","21643224"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7504"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68458"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352.6"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.eissn","1094-4087"],["dc.relation.issn","1094-4087"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","Partially coherent nano-focused x-ray radiation characterized by Talbot interferometry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","023804"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Physical Review A"],["dc.bibliographiccitation.volume","83"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Beta, C."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:44:21Z"],["dc.date.available","2017-09-07T11:44:21Z"],["dc.date.issued","2011"],["dc.description.abstract","We have used x-ray waveguides as highly confining optical elements for nanoscale imaging of unstained biological cells using the simple geometry of in-line holography. The well-known twin-image problem is effectively circumvented by a simple and fast iterative reconstruction. The algorithm which combines elements of the classical Gerchberg-Saxton scheme and the hybrid-input-output algorithm is optimized for phase-contrast samples, well-justified for imaging of cells at multi-keV photon energies. The experimental scheme allows for a quantitative phase reconstruction from a single holographic image without detailed knowledge of the complex illumination function incident on the sample, as demonstrated for freeze-dried cells of the eukaryotic amoeba Dictyostelium discoideum. The accessible resolution range is explored by simulations, indicating that resolutions on the order of 20 nm are within reach applying illumination times on the order of minutes at present synchrotron sources."],["dc.identifier.doi","10.1103/PhysRevA.83.023804"],["dc.identifier.gro","3142778"],["dc.identifier.isi","000287029900011"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/219"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1050-2947"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.title","X-ray propagation microscopy of biological cells using waveguides as a quasipoint source"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","867"],["dc.bibliographiccitation.journal","Journal of Synchrotron Radiation"],["dc.bibliographiccitation.lastpage","878"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Krenkel, Martin"],["dc.contributor.author","Wilke, Robin N."],["dc.contributor.author","Priebe, Marius"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Sprung, Michael"],["dc.date.accessioned","2017-09-07T11:43:44Z"],["dc.date.available","2017-09-07T11:43:44Z"],["dc.date.issued","2015"],["dc.description.abstract","A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Gottingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods."],["dc.identifier.doi","10.1107/S1600577515007742"],["dc.identifier.gro","3141875"],["dc.identifier.isi","000357407900001"],["dc.identifier.pmid","26134789"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2045"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 755: Nanoscale Photonic Imaging"],["dc.relation.eissn","1600-5775"],["dc.relation.issn","0909-0495"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","x-ray scattering"],["dc.title","Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","13492"],["dc.bibliographiccitation.issue","13"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","13501"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Krueger, S. P."],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Kalbfleisch, Sebastian"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Neubauer, Heike"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:45:58Z"],["dc.date.available","2017-09-07T11:45:58Z"],["dc.date.issued","2010"],["dc.description.abstract","We have combined two high transmission planar x-ray waveguides glued onto each other in a crossed geometry to form an effective quasi-point source. From measurements of the far-field diffraction pattern, the phase and amplitude of the near-field distribution is retrieved using the error-reduction algorithm. In agreement with finite difference field simulations (forward calculation), the reconstructed exit wave intensity distribution (inverse calculation) exhibits a full width at half maximum (FWHM) below 15 nm in both dimensions. Finally, holographic imaging is successfully demonstrated for the crossed waveguide device by translation of a lithographic test structure through the waveguide beam. (C) 2010 Optical Society of America"],["dc.identifier.doi","10.1364/OE.18.013492"],["dc.identifier.fs","569332"],["dc.identifier.gro","3142902"],["dc.identifier.isi","000279009900020"],["dc.identifier.pmid","20588479"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7506"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/357"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1094-4087"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray optics"],["dc.title","Sub-15 nm beam confinement by two crossed x-ray waveguides"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS