Options
Meijide Orive, Ana
Loading...
Preferred name
Meijide Orive, Ana
Official Name
Meijide Orive, Ana
Alternative Name
Meijide Orive, A.
Meijide, Ana
Meijide, A.
Main Affiliation
Now showing 1 - 10 of 31
2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1539"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biological Reviews"],["dc.bibliographiccitation.lastpage","1569"],["dc.bibliographiccitation.volume","92"],["dc.contributor.author","Dislich, Claudia"],["dc.contributor.author","Keyel, Alexander C."],["dc.contributor.author","Salecker, Jan"],["dc.contributor.author","Kisel, Yael"],["dc.contributor.author","Meyer, Katrin M."],["dc.contributor.author","Auliya, Mark"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Darras, Kevin"],["dc.contributor.author","Faust, Heiko"],["dc.contributor.author","Hess, Bastian"],["dc.contributor.author","Klasen, Stephan"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Meijide, Ana"],["dc.contributor.author","Nurdiansyah, Fuad"],["dc.contributor.author","Otten, Fenna"],["dc.contributor.author","Pe'er, Guy"],["dc.contributor.author","Steinebach, Stefanie"],["dc.contributor.author","Tarigan, Suria"],["dc.contributor.author","Tölle, Merja H."],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Wiegand, Kerstin"],["dc.date.accessioned","2017-09-07T11:44:46Z"],["dc.date.available","2017-09-07T11:44:46Z"],["dc.date.issued","2017"],["dc.description.abstract","Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal scales, such as differences among plantations in different environments, of different sizes, and of different ages, as our review has identified examples where ecosystem functions vary spatially and temporally. Finally, more research is needed on developing management practices that can offset the losses of ecosystem functions. Our findings should stimulate research to address the identified gaps, and provide a foundation for more systematic research and discussion on ways to minimize the negative impacts and maximize the positive impacts of oil palm cultivation."],["dc.identifier.doi","10.1111/brv.12295"],["dc.identifier.fs","621226"],["dc.identifier.gro","3148957"],["dc.identifier.pmid","27511961"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14337"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5600"],["dc.language.iso","en"],["dc.notes.intern","Wiegand Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B10: Landschaftsbezogene Bewertung der ökologischen und sozioökonomischen Funktionen von Regenwald- Transformationssystemen in Sumatra (Indonesien)"],["dc.relation.issn","1464-7931"],["dc.relation.orgunit","Abteilung Ökosystemmodellierung"],["dc.relation.orgunit","Wirtschaftswissenschaftliche Fakultät"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0/"],["dc.subject.gro","Elaeis guineensis"],["dc.subject.gro","biodiversity"],["dc.subject.gro","ecosystem functions"],["dc.subject.gro","ecosystem services"],["dc.subject.gro","land-use change"],["dc.subject.gro","oil palm"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","A review of the ecosystem functions in oil palm plantations, using forests as a reference system"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","4619"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Biogeosciences"],["dc.bibliographiccitation.lastpage","4635"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Sabajo, Clifton R."],["dc.contributor.author","le Maire, Guerric"],["dc.contributor.author","June, Tania"],["dc.contributor.author","Meijide Orive, Ana"],["dc.contributor.author","Roupsard, Olivier"],["dc.contributor.author","Knohl, Alexander"],["dc.date.accessioned","2019-07-09T11:44:37Z"],["dc.date.available","2019-07-09T11:44:37Z"],["dc.date.issued","2017"],["dc.description.abstract","Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a highresolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 2.6 C (mean SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change."],["dc.identifier.doi","10.5194/bg-14-4619-2017"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14845"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59053"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation.issn","1726-4189"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.subject.ddc","570"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Geophysical Research. G, Biogeosciences"],["dc.bibliographiccitation.volume","125"],["dc.contributor.author","Serrano‐Ortiz, P."],["dc.contributor.author","Aranda‐Barranco, S."],["dc.contributor.author","López‐Ballesteros, A."],["dc.contributor.author","Lopez‐Canfin, C."],["dc.contributor.author","Sánchez‐Cañete, E.P."],["dc.contributor.author","Meijide, A."],["dc.contributor.author","Kowalski, A.S."],["dc.date.accessioned","2021-04-14T08:27:48Z"],["dc.date.available","2021-04-14T08:27:48Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1029/2019JG005169"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82407"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2169-8961"],["dc.relation.issn","2169-8953"],["dc.title","Transition Period Between Vegetation Growth and Senescence Controlling Interannual Variability of C Fluxes in a Mediterranean Reed Wetland"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","142442"],["dc.bibliographiccitation.journal","Science of The Total Environment"],["dc.bibliographiccitation.volume","755"],["dc.contributor.author","Perez-Quezada, Jorge F."],["dc.contributor.author","Urrutia, Paul"],["dc.contributor.author","Olivares-Rojas, Javiera"],["dc.contributor.author","Meijide Orive, Ana"],["dc.contributor.author","Sánchez-Cañete, Enrique P."],["dc.contributor.author","Gaxiola, Aurora"],["dc.date.accessioned","2021-04-14T08:28:49Z"],["dc.date.available","2021-04-14T08:28:49Z"],["dc.date.issued","2021"],["dc.description.abstract","Forest fires can cause great changes in the composition, structure and functioning of forest ecosystems. We studied the effects of a fire that occurred >50 years ago in a temperate rainforest that caused flooding conditions in a Placic Andosol to evaluate how long these effects last; we hypothesized that the effects of fire on the soil greenhouse gas (GHG) balance could last for many years. We made monthly measurements of fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) during two years of soils in an unburned forest (UF) and a nearby site that burned >50 years ago (BS). Our results show that CO2 emissions from soils were higher in the UF than in the BS, and positively correlated with temperature and negatively with soil water content at both sites. Both sites were net CH4 sinks (higher in the UF) and fluxes correlated positively with soil water content and negatively with temperature (stronger relation in the BS). Emissions of N2O were low at both sites and showed correlation with friction velocity at the UF site. The soil GHG balance showed that the UF emitted about 80% more than the BS (5079 ± 1772 and 2815 ± 1447 g CO2-eq m−2 y−1, respectively). Combining our measured fluxes with data of CO2 net ecosystem exchange, we estimated that at the ecosystem level, the UF was a GHG sink while the BS was a source, showing a long-lasting effect of the fire and the importance of preserving these forest ecosystems."],["dc.identifier.doi","10.1016/j.scitotenv.2020.142442"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82718"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.issn","0048-9697"],["dc.relation.orgunit","Department für Nutzpflanzenwissenschaften"],["dc.relation.orgunit","Fakultät für Agrarwissenschaften"],["dc.relation.orgunit","Abteilung Pflanzenbau"],["dc.title","Long term effects of fire on the soil greenhouse gas balance of an old-growth temperate rainforest"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Overview [["dc.bibliographiccitation.firstpage","81"],["dc.bibliographiccitation.journal","Current Opinion in Environmental Sustainability"],["dc.bibliographiccitation.lastpage","88"],["dc.bibliographiccitation.volume","47"],["dc.contributor.author","Skiba, Ute"],["dc.contributor.author","Hergoualc’h, Kristell"],["dc.contributor.author","Drewer, Julia"],["dc.contributor.author","Meijide Orive, Ana"],["dc.contributor.author","Knohl, Alexander"],["dc.date.accessioned","2021-04-14T08:29:56Z"],["dc.date.available","2021-04-14T08:29:56Z"],["dc.date.issued","2020"],["dc.description.abstract","Oil palm plantations have rapidly expanded over the last 30 years, and now occupy 10% of the world’s permanent cropland. The growth of one of the world’s most efficient and versatile crop has alleviated poverty and increased food and energy security, but not without side effects. Losses of forest biodiversity hits the news. Although equally important, climate change issues have not reached this limelight. Data on greenhouse gas emissions associated with oil palm production is limited, especially for the potent greenhouse gas nitrous oxide (N2O). This paper provides an overview of the data availability, and identifies knowledge gaps to steer future research to provide the data required for climate change models and more accurate international and national nitrous oxide emission accounting."],["dc.identifier.doi","10.1016/j.cosust.2020.08.019"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83042"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation.issn","1877-3435"],["dc.relation.orgunit","Department für Nutzpflanzenwissenschaften"],["dc.relation.orgunit","Fakultät für Agrarwissenschaften"],["dc.relation.orgunit","Abteilung Pflanzenbau"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","sfb990_reviews"],["dc.title","Oil palm plantations are large sources of nitrous oxide, but where are the data to quantify the impact on global warming?"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2021-08-30Journal Article Research Paper [["dc.bibliographiccitation.artnumber","723862"],["dc.bibliographiccitation.journal","Frontiers in Plant Science"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Chea, Leangsrun"],["dc.contributor.author","Meijide Orive, Ana"],["dc.contributor.author","Meinen, Catharina"],["dc.contributor.author","Pawelzik, Elke"],["dc.contributor.author","Naumann, Marcel"],["dc.date.accessioned","2021-10-01T09:58:19Z"],["dc.date.available","2021-10-01T09:58:19Z"],["dc.date.issued","2021-08-30"],["dc.description.abstract","The limited availability of phosphorus (P) in soils causes a major constraint in the productivity of potatoes, which requires increased knowledge of plant adaptation responses in this condition. In this study, six potato cultivars, namely, Agria, Lady Claire, Milva, Lilly, Sieglinde, and Verdi, were assessed for their responses on plant growth, leaf physiology, P use efficiency (PUE), and tuber quality with three P levels (P low , P med , and P high ). The results reveal a significant variation in the cultivars in response to different P availabilities. P-efficient cultivars, Agria, Milva, and Lilly, possessed substantial plant biomass, tuber yield, and high P uptake efficiency (PUpE) under low P supply conditions. The P-inefficient cultivars, Lady Claire, Sieglinde, and Verdi, could not produce tubers under P deprivation conditions, as well as the ability to efficiently uptake P under low-level conditions, but they were efficient in P uptake under high soil P conditions. Improved PUpE is important for plant tolerance with limited P availability, which results in the efficient use of the applied P. At the leaf level, increased accumulations of nitrate, sulfate, sucrose, and proline are necessary for a plant to acclimate to P deficiency-induced stress and to mobilize leaf inorganic phosphate to increase internal PUE and photosynthesis. The reduction in plant biomass and tuber yield under P-deficient conditions could be caused by reduced CO 2 assimilation. Furthermore, P deficiency significantly reduced tuber yield, dry matter, and starch concentration in Agria, Milva, and Lilly. However, contents of tuber protein, sugars, and minerals, as well as antioxidant capacity, were enhanced under these conditions in these cultivars. These results highlight the important traits contributing to potato plant tolerance under P-deficient conditions and indicate an opportunity to improve the P efficiency and tuber quality of potatoes under deficient conditions using more efficient cultivars. Future research to evaluate molecular mechanisms related to P and sucrose translocation, and minimize tuber yield reduction under limited P availability conditions is necessary."],["dc.description.abstract","The limited availability of phosphorus (P) in soils causes a major constraint in the productivity of potatoes, which requires increased knowledge of plant adaptation responses in this condition. In this study, six potato cultivars, namely, Agria, Lady Claire, Milva, Lilly, Sieglinde, and Verdi, were assessed for their responses on plant growth, leaf physiology, P use efficiency (PUE), and tuber quality with three P levels (P low , P med , and P high ). The results reveal a significant variation in the cultivars in response to different P availabilities. P-efficient cultivars, Agria, Milva, and Lilly, possessed substantial plant biomass, tuber yield, and high P uptake efficiency (PUpE) under low P supply conditions. The P-inefficient cultivars, Lady Claire, Sieglinde, and Verdi, could not produce tubers under P deprivation conditions, as well as the ability to efficiently uptake P under low-level conditions, but they were efficient in P uptake under high soil P conditions. Improved PUpE is important for plant tolerance with limited P availability, which results in the efficient use of the applied P. At the leaf level, increased accumulations of nitrate, sulfate, sucrose, and proline are necessary for a plant to acclimate to P deficiency-induced stress and to mobilize leaf inorganic phosphate to increase internal PUE and photosynthesis. The reduction in plant biomass and tuber yield under P-deficient conditions could be caused by reduced CO 2 assimilation. Furthermore, P deficiency significantly reduced tuber yield, dry matter, and starch concentration in Agria, Milva, and Lilly. However, contents of tuber protein, sugars, and minerals, as well as antioxidant capacity, were enhanced under these conditions in these cultivars. These results highlight the important traits contributing to potato plant tolerance under P-deficient conditions and indicate an opportunity to improve the P efficiency and tuber quality of potatoes under deficient conditions using more efficient cultivars. Future research to evaluate molecular mechanisms related to P and sucrose translocation, and minimize tuber yield reduction under limited P availability conditions is necessary."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.3389/fpls.2021.723862"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/90039"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.publisher","Frontiers Media S.A."],["dc.relation.doi","10.3389/fpls.2021.723862"],["dc.relation.eissn","1664-462X"],["dc.relation.orgunit","Department für Nutzpflanzenwissenschaften"],["dc.relation.orgunit","Abteilung Pflanzenbau"],["dc.relation.orgunit","Abteilung Qualität pflanzlicher Erzeugnisse"],["dc.relation.orgunit","Fakultät für Agrarwissenschaften"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Cultivar-Dependent Responses in Plant Growth, Leaf Physiology, Phosphorus Use Efficiency, and Tuber Quality of Potatoes Under Limited Phosphorus Availability Conditions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","208"],["dc.bibliographiccitation.journal","Agricultural and Forest Meteorology"],["dc.bibliographiccitation.lastpage","219"],["dc.bibliographiccitation.volume","252"],["dc.contributor.author","Meijide, Ana"],["dc.contributor.author","Badu, Chandra Shekhar"],["dc.contributor.author","Moyano, Fernando"],["dc.contributor.author","Tiralla, Nina"],["dc.contributor.author","Gunawan, Dodo"],["dc.contributor.author","Knohl, Alexander"],["dc.date.accessioned","2019-11-18T14:44:24Z"],["dc.date.available","2019-11-18T14:44:24Z"],["dc.date.issued","2018"],["dc.description.abstract","Oil palm and rubber expansion is a main driver of the widespread deforestation of tropical rainforests taking place in South-East Asia, particularly in Indonesia. The replacement of forests with monoculture plantations of rubber and oil palm reduces biodiversity and carbon pools but also modifies canopy structure, which is an important determinant of microclimate. There is, however, a lack of quantitative information characterizing the effect of such land transformation on microclimate. We report the first medium-term observations of below-canopy microclimatic conditions (air temperature, relative humidity, vapour pressure deficit and soil temperature) across forest, jungle rubber agroforest, oil palm and rubber monoculture plantations in Sumatra/Indonesia. The data set covers a period of approximately three years (2013–2016) and includes one of the strongest El Niño-Southern Oscillations (ENSO) of the last decades. Forests were up to 2.3 and 2.2 °C cooler than oil palm and rubber monocultures respectively. The monocultures were also drier (11.9% and 12.8% less in oil palm and rubber respectively) and had higher vapour pressure deficit (632 Pa and 665 Pa higher in oil palm and rubber respectively) than the forest, while differences in soil temperature were less pronounced. Conversion from forest to other land uses, especially to monocultures, also amplified the diurnal range of all microclimatic variables studied. Jungle rubber stands out as the transformed land-use system that maintains more stable microclimatic conditions. Our results indicate that canopy openness is a key driver of below-canopy microclimate, and hence could be used in climate models to better evaluate climatic feedbacks of land-use change to rubber and oil palm. The ENSO event of 2015 led to warmer and drier conditions than in the previous two years in all four land-use systems, especially in the forest (up to 2.3 °C warmer, 8.9% drier and up to 351 Pa more during ENSO). The relative effect of ENSO was lower in the monoculture plantations, where below-canopy microclimate is generally more similar to open areas. Forests exhibited the largest differences with the pre-ENSO years, but still maintained more stable microclimatic conditions (lower temperatures and vapour pressure deficit and higher relative humidity) due to their higher climate regulation capacity. During ENSO, microclimatic conditions in jungle rubber were comparable to those in the monocultures, suggesting that while forests buffered the increase of temperature, jungle rubber might have surpassed its buffering capacity to extreme events. This capacity of buffering extreme climatic events should be considered when assessing the effects of land-use change."],["dc.identifier.doi","10.1016/j.agrformet.2018.01.013"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62653"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation.issn","0168-1923"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2015-06Working Paper [["dc.bibliographiccitation.seriesnr","16"],["dc.contributor.author","Dislich, Claudia"],["dc.contributor.author","Keyel, Alexander C."],["dc.contributor.author","Salecker, Jan"],["dc.contributor.author","Kisel, Yael"],["dc.contributor.author","Meyer, Katrin M."],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Faust, Heiko"],["dc.contributor.author","Hess, Bastian"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Meijide, Ana"],["dc.contributor.author","Nurdiansyah, Fuad"],["dc.contributor.author","Otten, Fenna"],["dc.contributor.author","Pe’er, Guy"],["dc.contributor.author","Steinebach, Stefanie"],["dc.contributor.author","Tarigan, Suria"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Tölle, Merja"],["dc.contributor.author","Wiegand, Kerstin"],["dc.date.accessioned","2022-05-19T10:11:54Z"],["dc.date.available","2022-05-19T10:11:54Z"],["dc.date.issued","2015-06"],["dc.description.abstract","Oil palm plantations have expanded rapidly in the last decades. This large-scale land-use change has had great impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm agriculture is scattered and patchy, and no clear overview exists. Here, we address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations. We compare ecosystem functions in oil palm plantations to those in forests as forests are often cleared for the establishment of oil palm. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests. Some of these functions are lost globally, such as those to gas and climate regulation and to habitat and nursery functions. The most serious impacts occur when land is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, plantation management can prevent or reduce losses of some ecosystem functions. The only ecosystem function which increased in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to information functions (socio-cultural functions). There is a need for empirical data on the importance of spatial and temporal scales, such as the differences between plantations in different environments, of different sizes, and of different ages. Finally, more research is needed on developing management practices that can off-set the losses of ecosystem functions. Our findings should stimulate research to address the identified gaps, and provide a foundation for more systematic research and discussion on ways to minimize the negative impacts and maximize the positive impacts of oil palm agriculture."],["dc.format.extent","IV, 55"],["dc.identifier.ppn","829081887"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108099"],["dc.language.iso","en"],["dc.publisher","SFB 990, University of Göttingen; GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universität Göttingen"],["dc.publisher.place","Göttingen"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B09: Oberirdische Biodiversitätsmuster und Prozesse in Regenwaldtransformations-Landschaften"],["dc.relation","SFB 990 | B | B10: Landschaftsbezogene Bewertung der ökologischen und sozioökonomischen Funktionen von Regenwald- Transformationssystemen in Sumatra (Indonesien)"],["dc.relation","SFB 990 | C | C02: Soziale Transformationsprozesse und nachhaltige Ressourcennutzung im ländlichen Jambi"],["dc.relation","SFB 990 | C | C03: Culture-Specific Human Interaction with Tropical Lowland Rainforests in Transformation in Jambi, Sumatra"],["dc.relation.crisseries","EFForTS Discussion Paper Series"],["dc.relation.orgunit","Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie"],["dc.rights","CC BY-ND 4.0"],["dc.subject.gro","ecosystem functions; ecosystem services; biodiversity; oil palm; land-use change; Elaeis guineensis; review"],["dc.subject.gro","sfb990_discussionpaperseries"],["dc.title","Ecosystem functions of oil palm plantations"],["dc.title.subtitle","a review"],["dc.type","working_paper"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","160"],["dc.bibliographiccitation.journal","Agricultural and Forest Meteorology"],["dc.bibliographiccitation.lastpage","171"],["dc.bibliographiccitation.volume","274"],["dc.contributor.author","Röll, Alexander"],["dc.contributor.author","Niu, F."],["dc.contributor.author","Meijide Orive, Ana"],["dc.contributor.author","Ahongshangbam, J."],["dc.contributor.author","Ehbrecht, M."],["dc.contributor.author","Guillaume, T."],["dc.contributor.author","Gunawan, D."],["dc.contributor.author","Hardanto, A."],["dc.contributor.author","Hendrayanto, null"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Kotowska, M.M."],["dc.contributor.author","Kreft, H."],["dc.contributor.author","Kuzyakov, Yakov"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Nomura, M."],["dc.contributor.author","Polle, Andrea"],["dc.contributor.author","Rembold, K."],["dc.contributor.author","Sahner, J."],["dc.contributor.author","Seidel, Dominik"],["dc.contributor.author","Zemp, D.C."],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Hölscher, Dirk"],["dc.date.accessioned","2019-11-14T15:27:44Z"],["dc.date.available","2019-11-14T15:27:44Z"],["dc.date.issued","2019"],["dc.description.abstract","Following large-scale conversion of rainforest, rubber and oil palm plantations dominate lowland Sumatra (Indonesia) and other parts of South East Asia today, with potentially far-reaching ecohydrological consequences. We assessed how such land-use change affects plant transpiration by sap flux measurements at 42 sites in selectively logged rainforests, agroforests and rubber and oil palm monoculture plantations in the lowlands of Sumatra. Site-to-site variability in stand-scale transpiration and tree-level water use were explained by stand structure, productivity, soil properties and plantation age. Along a land-use change trajectory forest-rubber-oil palm, time-averaged transpiration decreases by 43 ± 11% from forest to rubber monoculture plantations, but rebounds with conversion to smallholder oil palm plantations. We uncovered that particularly commercial, intensive oil palm cultivation leads to high transpiration (827 ± 77 mm yr −1), substantially surpassing rates at our forest sites (589 ± 52 mm yr −1). Compared to smallholder oil palm, land-use intensification leads to 1.7-times higher transpiration in commercial plantations. Combined with severe soil degradation, the high transpiration may cause periodical water scarcity for humans in oil palm-dominated landscapes. As oil palm is projected to further expand, severe shifts in water cycling after land-cover change and water scarcity due to land-use intensification may become more widesprea"],["dc.identifier.doi","10.1016/j.agrformet.2019.04.017"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62625"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A02: Wassernutzungseigenschaften von Bäumen und Palmen in Regenwald-Transformationssystemen Zusammenfassung"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | A | A04: Carbon stock, turnover and functions in heavily weathered soils under lowland rainforest transformation systems"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B07: Functional diversity of mycorrhizal fungi along a tropical land-use gradient"],["dc.relation","SFB 990 | B | B11: Biodiversitäts-Anreicherung in Ölpalmen-Plantagen: Pflanzliche Sukzession und Integration"],["dc.relation.issn","0168-1923"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.relation.orgunit","Department für Nutzpflanzenwissenschaften"],["dc.relation.orgunit","Fakultät für Agrarwissenschaften"],["dc.relation.orgunit","Abteilung Pflanzenbau"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Transpiration on the rebound in lowland Sumatra"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","064035"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Environmental Research Letters"],["dc.bibliographiccitation.volume","13"],["dc.contributor.affiliation","Manoli, Gabriele;"],["dc.contributor.affiliation","Meijide, Ana;"],["dc.contributor.affiliation","Huth, Neil;"],["dc.contributor.affiliation","Knohl, Alexander;"],["dc.contributor.affiliation","Kosugi, Yoshiko;"],["dc.contributor.affiliation","Burlando, Paolo;"],["dc.contributor.affiliation","Ghazoul, Jaboury;"],["dc.contributor.affiliation","Fatichi, Simone;"],["dc.contributor.author","Manoli, Gabriele"],["dc.contributor.author","Meijide Orive, Ana"],["dc.contributor.author","Huth, Neil"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Kosugi, Yoshiko"],["dc.contributor.author","Burlando, Paolo"],["dc.contributor.author","Ghazoul, Jaboury"],["dc.contributor.author","Fatichi, Simone"],["dc.date.accessioned","2019-11-18T14:36:00Z"],["dc.date.available","2019-11-18T14:36:00Z"],["dc.date.issued","2018"],["dc.date.updated","2022-02-09T13:19:01Z"],["dc.description.abstract","Given their ability to provide food, raw material and alleviate poverty, oil palm (OP) plantations are driving significant losses of biodiversity-rich tropical forests, fuelling a heated debate on ecosystem degradation and conservation. However, while OP-induced carbon emissions and biodiversity losses have received significant attention, OP water requirements have been marginalized and little is known on the ecohydrological changes (water and surface energy fluxes) occurring from forest clearing to plantation maturity. Numerical simulations supported by field observations from seven sites in Southeast Asia (five OP plantations and two tropical forests) are used here to illustrate the temporal evolution of OP actual evapotranspiration (ET), infiltration/runoff, gross primary productivity (GPP) and surface temperature as well as their changes relative to tropical forests. Model results from large-scale commercial plantations show that young OP plantations decrease ecosystem ET, causing hotter and drier climatic conditions, but mature plantations (age > 8−9 yr) have higher GPP and transpire more water (up to +7.7%) than the forests they have replaced. This is the result of physiological constraints on water use efficiency and the extremely high yield of OP (six to ten times higher than other oil crops). Hence, the land use efficiency of mature OP, i.e. the high productivity per unit of land area, comes at the expense of water consumption in a trade of water for carbon that may jeopardize local water resources. Sequential replanting and herbaceous ground cover can reduce the severity of such ecohydrological changes and support local water/climate regulation."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft 10.13039/501100001659"],["dc.description.sponsorship","Swiss National Science Foundation"],["dc.identifier.doi","10.1088/1748-9326/aac54e"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62650"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation.issn","1748-9326"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.rights.uri","http://creativecommons.org/licenses/by/3.0/"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Ecohydrological changes after tropical forest conversion to oil palm"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI