Now showing 1 - 10 of 24
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e9561"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","EMBO Molecular Medicine"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Mohanraj, Karthik"],["dc.contributor.author","Wasilewski, Michal"],["dc.contributor.author","Benincá, Cristiane"],["dc.contributor.author","Cysewski, Dominik"],["dc.contributor.author","Poznanski, Jaroslaw"],["dc.contributor.author","Sakowska, Paulina"],["dc.contributor.author","Bugajska, Zaneta"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Fernandez‐Vizarra, Erika"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dadlez, Michal"],["dc.contributor.author","Zeviani, Massimo"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.date.accessioned","2019-07-09T11:51:37Z"],["dc.date.available","2019-07-09T11:51:37Z"],["dc.date.issued","2019"],["dc.description.abstract","Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS. We also found that pathogenic mutant versions of COA7 are imported slower than the wild‐type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient‐derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins."],["dc.identifier.doi","10.15252/emmm.201809561"],["dc.identifier.pmid","30885959"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16155"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59974"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/64"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/322424/EU//MITCARE"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","540"],["dc.title","Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","23769"],["dc.bibliographiccitation.issue","45"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","23778"],["dc.bibliographiccitation.volume","291"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Müller, Tobias"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Hofmann, Kay"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2020-12-10T18:12:56Z"],["dc.date.available","2020-12-10T18:12:56Z"],["dc.date.issued","2016"],["dc.description.abstract","The mitochondrial electron transport chain consists of individual protein complexes arranged into large macromolecular structures, termed respiratory chain supercomplexes or respirasomes. In the yeast Saccharomyces cerevisiae, respiratory chain supercomplexes form by association of the bc(1) complex with the cytochrome c oxidase. Formation and maintenance of these assemblies are promoted by specific respiratory supercomplex factors, the Rcf proteins. For these proteins a regulatory function in bridging the electron transfer within supercomplexes has been proposed. Here we report on the maturation of Rcf2 into an N- and C-terminal peptide. We show that the previously uncharacterized Rcf3 (YBR255c-A) is a homolog of the N-terminal Rcf2 peptide, whereas Rcf1 is homologous to the C-terminal portion. Both Rcf3 and the C-terminal fragment of Rcf2 associate with monomeric cytochrome c oxidase and respiratory chain supercomplexes. A lack of Rcf2 and Rcf3 increases oxygen flux through the respiratory chain by up-regulation of the cytochrome c oxidase activity. A double gene deletion of RCF2 and RCF3 affects cellular survival under non-fermentable growth conditions, suggesting an overlapping role for both proteins in the regulation of the OXPHOS activity. Furthermore, our data suggest an association of all three Rcf proteins with the bc(1) complex in the absence of a functional cytochrome c oxidase and identify a supercomplex independent interaction network of the Rcf proteins."],["dc.identifier.doi","10.1074/jbc.M116.734665"],["dc.identifier.eissn","1083-351X"],["dc.identifier.isi","000387884400036"],["dc.identifier.issn","0021-9258"],["dc.identifier.pmid","27662906"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74539"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Biochemistry Molecular Biology Inc"],["dc.relation.issn","1083-351X"],["dc.relation.issn","0021-9258"],["dc.title","Overlapping Role of Respiratory Supercomplex Factor Rcf2 and Its N-terminal Homolog Rcf3 in Saccharomyces cerevisiae"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","141"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","154"],["dc.bibliographiccitation.volume","191"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Piechura, Heike"],["dc.contributor.author","Meyer, Helmut E."],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:15Z"],["dc.date.available","2017-09-07T11:45:15Z"],["dc.date.issued","2010"],["dc.description.abstract","Regulation of eukaryotic cytochrome oxidase assembly occurs at the level of Cox1 translation, its central mitochondria-encoded subunit. Translation of COX1 messenger RNA is coupled to complex assembly in a negative feedback loop: the translational activator Mss51 is thought to be sequestered to assembly intermediates, rendering it incompetent to promote translation. In this study, we identify Coa3 (cytochrome oxidase assembly factor 3; Yjl062w-A), a novel regulator of mitochondrial COX1 translation and cytochrome oxidase assembly. We show that Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for Mss51 association with these complexes. Mss51 exists in equilibrium between a latent, translational resting, and a committed, translation-effective, state that are represented as distinct complexes. Coa3 and Cox14 promote formation of the latent state and thus down-regulate COX1 expression. Consequently, lack of Coa3 or Cox14 function traps Mss51 in the committed state and promotes Cox1 synthesis. Our data indicate that Coa1 binding to sequestered Mss51 in complex with Cox14, Coa3, and Cox1 is essential for full inactivation."],["dc.identifier.doi","10.1083/jcb.201007026"],["dc.identifier.gro","3142844"],["dc.identifier.isi","000282648500014"],["dc.identifier.pmid","20876281"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6311"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/293"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","247"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","257"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Alkhaja, Alwaleed K."],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Nikolov, Miroslav"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Ludewig, Fabian"],["dc.contributor.author","Schliebs, Wolfgang"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:49:01Z"],["dc.date.available","2017-09-07T11:49:01Z"],["dc.date.issued","2012"],["dc.description.abstract","The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery."],["dc.identifier.doi","10.1091/mbc.E11-09-0774"],["dc.identifier.gro","3142588"],["dc.identifier.isi","000299108000002"],["dc.identifier.pmid","22114354"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7823"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8955"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1059-1524"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1457"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","1466"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Lupo, Domenico"],["dc.contributor.author","Vollmer, Christine"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Tews, Ivo"],["dc.contributor.author","Sinning, Irmgard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:24Z"],["dc.date.available","2017-09-07T11:43:24Z"],["dc.date.issued","2011"],["dc.description.abstract","Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA-specific activator proteins and occurs on membrane-associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome-binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 angstrom resolution. Surprisingly, Mdm38(RBD) displays a 14-3-3-like fold despite any similarity to 14-3-3-proteins at the primary sequence level and thus represents the first 14-3-3-like protein in mitochondria. The 14-3-3-like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38 Delta as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery."],["dc.identifier.doi","10.1111/j.1600-0854.2011.01239.x"],["dc.identifier.gro","3142664"],["dc.identifier.isi","000295052500017"],["dc.identifier.pmid","21718401"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [FOR967]; Max-Planck Society"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1600-0854"],["dc.relation.issn","1398-9219"],["dc.title","Mdm38 is a 14-3-3-Like Receptor and Associates with the Protein Synthesis Machinery at the Inner Mitochondrial Membrane"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article
    [["dc.bibliographiccitation.artnumber","S0167488921001877"],["dc.bibliographiccitation.firstpage","119133"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta. Molecular Cell Research"],["dc.bibliographiccitation.volume","1868"],["dc.contributor.author","Homberg, Bettina"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2021-09-01T06:42:57Z"],["dc.date.available","2021-09-01T06:42:57Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.bbamcr.2021.119133"],["dc.identifier.pii","S0167488921001877"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89186"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation.issn","0167-4889"],["dc.title","Rcf proteins and their differential specificity for respiratory chain complexes: A unique role for Rcf2 on oxygen sensitive supercomplexes?"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Conference Abstract
    [["dc.bibliographiccitation.firstpage","209"],["dc.bibliographiccitation.journal","FEBS Journal"],["dc.bibliographiccitation.lastpage","210"],["dc.bibliographiccitation.volume","282"],["dc.contributor.author","Heininger, A. U."],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Andreou, Alexandra-Zoi"],["dc.contributor.author","Boon, K.-L."],["dc.contributor.author","Prior, M."],["dc.contributor.author","Schmidt, B."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Schleiff, Enrico"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Lührmann, Reinhard"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Klostermeier, Dagmar"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2018-11-07T09:54:51Z"],["dc.date.available","2018-11-07T09:54:51Z"],["dc.date.issued","2015"],["dc.identifier.isi","000362570603174"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36625"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","1742-4658"],["dc.relation.issn","1742-464X"],["dc.title","Sequestering and protein cofactor competition regulate a multifunctional RNA helicase in different pathways"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","33314"],["dc.bibliographiccitation.issue","40"],["dc.bibliographiccitation.journal","Journal of biological chemistry"],["dc.bibliographiccitation.lastpage","33326"],["dc.bibliographiccitation.volume","287"],["dc.contributor.author","Krüger, Vivien"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Hildenbeutel, Markus"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Hellmers, Maike"],["dc.contributor.author","Dreker, Christina"],["dc.contributor.author","Preuss, Marc"],["dc.contributor.author","Herrmann, Johannes M."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Wagner, Richard"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2017-09-07T11:48:24Z"],["dc.date.available","2017-09-07T11:48:24Z"],["dc.date.issued","2012"],["dc.description.abstract","The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner."],["dc.identifier.doi","10.1074/jbc.M112.387563"],["dc.identifier.gro","3142462"],["dc.identifier.isi","000309602100020"],["dc.identifier.pmid","22829595"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8551"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9258"],["dc.title","The Mitochondrial Oxidase Assembly Protein1 (Oxa1) Insertase Forms a Membrane Pore in Lipid Bilayers"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1624"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1632"],["dc.bibliographiccitation.volume","1863"],["dc.contributor.author","Levchenko, Maria"],["dc.contributor.author","Wuttke, Jan-Moritz"],["dc.contributor.author","Römpler, Katharina"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Neifer, Klaus"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:44:49Z"],["dc.date.available","2017-09-07T11:44:49Z"],["dc.date.issued","2016"],["dc.description.abstract","The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Coxl, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc(1)-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization. (C) 2016 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbamcr.2016.04.007"],["dc.identifier.gro","3141656"],["dc.identifier.isi","000378360200015"],["dc.identifier.pmid","27083394"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6009"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","0006-3002"],["dc.relation.issn","0167-4889"],["dc.title","Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","39"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Steyer, Anna M."],["dc.contributor.author","Balzarotti, Francisco"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Behr, Tiana S."],["dc.contributor.author","Heim, Gudrun"],["dc.contributor.author","Hübner, Wolfgang"],["dc.contributor.author","Ilgen, Peter"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Pacheu‐Grau, David"],["dc.contributor.author","Pape, Jasmin K."],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Huser, Thomas"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2021-04-14T08:25:12Z"],["dc.date.available","2021-04-14T08:25:12Z"],["dc.date.issued","2020"],["dc.description.abstract","Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1Fo-ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1Fo-ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae."],["dc.identifier.doi","10.15252/embj.2019104105"],["dc.identifier.pmid","32567732"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81550"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/51"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/115"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/25"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P04: Analyse der räumlichen Organisation der OXPHOS Assemblierung in Säugerzellen"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Möbius"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Riedel"],["dc.rights","CC BY 4.0"],["dc.title","MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC