Now showing 1 - 8 of 8
  • 2018Journal Article
    [["dc.bibliographiccitation.artnumber","4762"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Kamper, Maria"],["dc.contributor.author","Ta, Haisen"],["dc.contributor.author","Jensen, Nickels A."],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2019-07-09T11:50:56Z"],["dc.date.available","2019-07-09T11:50:56Z"],["dc.date.issued","2018"],["dc.description.abstract","The near infrared (NIR) optical window between the cutoff for hemoglobin absorption at 650 nm and the onset of increased water absorption at 900 nm is an attractive, yet largely unexplored, spectral regime for diffraction-unlimited super-resolution fluorescence microscopy (nanoscopy). We developed the NIR fluorescent protein SNIFP, a bright and photostable bacteriophytochrome, and demonstrate its use as a fusion tag in live-cell microscopy and STED nanoscopy. We further demonstrate dual color red-confocal/NIR-STED imaging by co-expressing SNIFP with a conventional red fluorescent protein."],["dc.identifier.doi","10.1038/s41467-018-07246-2"],["dc.identifier.pmid","30420676"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16027"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59855"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Near-infrared STED nanoscopy with an engineered bacterial phytochrome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Communications Biology"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Andresen, Martin"],["dc.contributor.author","Jensen, Nickels"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Chizhik, Alexey I."],["dc.date.accessioned","2021-03-05T08:58:32Z"],["dc.date.available","2021-03-05T08:58:32Z"],["dc.date.issued","2020"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s42003-020-01316-2"],["dc.identifier.pmid","33128009"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17780"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80175"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/87"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2399-3642"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.workinggroup","RG Enderlein"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","756"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","ChemPhysChem"],["dc.bibliographiccitation.lastpage","762"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Jensen, Nickels A."],["dc.contributor.author","Danzl, Johann G."],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Lavoie-Cardinal, Flavie"],["dc.contributor.author","Brakemann, Tanja"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:46:25Z"],["dc.date.available","2017-09-07T11:46:25Z"],["dc.date.issued","2014"],["dc.description.abstract","Diffraction-unlimited far-field super-resolution fluorescence (nanoscopy) methods typically rely on transiently transferring fluorophores between two states, whereby this transfer is usually laid out as a switch. However, depending on whether this is induced in a spatially controlled manner using a pattern of light (coordinate-targeted) or stochastically on a single-molecule basis, specific requirements on the fluorophores are imposed. Therefore, the fluorophores are usually utilized just for one class of methods only. In this study we demonstrate that the reversibly switchable fluorescent protein Dreiklang enables live-cell recordings in both spatially controlled and stochastic modes. We show that the Dreiklang chromophore entails three different light-induced switching mechanisms, namely a reversible photochemical one, off-switching by stimulated emission, and a reversible transfer to a long-lived dark state from the S-1 state, all of which can be utilized to overcome the diffraction barrier. We also find that for the single-molecule-based stochastic GSDIM approach (ground-state depletion followed by individual molecule return), Dreiklang provides a larger number of on-off localization events as compared to its progenitor Citrine. Altogether, Dreiklang is a versatile probe for essentially all popular forms of live-cell fluorescence nanoscopy."],["dc.identifier.doi","10.1002/cphc.201301034"],["dc.identifier.gro","3142169"],["dc.identifier.isi","000332747500026"],["dc.identifier.pmid","24497300"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5299"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1439-7641"],["dc.relation.issn","1439-4235"],["dc.title","Coordinate-Targeted and Coordinate-Stochastic Super-Resolution Microscopy with the Reversibly Switchable Fluorescent Protein Dreiklang"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","655"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","ChemPhysChem"],["dc.bibliographiccitation.lastpage","663"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Lavoie-Cardinal, Flavie"],["dc.contributor.author","Jensen, Nickels A."],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Stiel, Andre C."],["dc.contributor.author","Chmyrov, Andriy"],["dc.contributor.author","Bierwagen, Jakob"],["dc.contributor.author","Testa, Ilaria"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:46:25Z"],["dc.date.available","2017-09-07T11:46:25Z"],["dc.date.issued","2014"],["dc.description.abstract","Up to now, all demonstrations of reversible saturable optical fluorescence transitions (RESOLFT) superresolution microscopy of living cells have relied on the use of reversibly switchable fluorescent proteins (RSFP) emitting in the green spectral range. Here we show RESOLFT imaging with rsCherryRev1.4, a new red-emitting RSFP enabling a spatial resolution up to four times higher than the diffraction barrier. By co-expressing green and red RSFPs in living cells we demonstrate two-color RESOLFT imaging both for single (donut) beam scanning and for parallelized versions of RESOLFT nanoscopy where an array of >23000 donut-like minima are scanned simultaneously."],["dc.identifier.doi","10.1002/cphc.201301016"],["dc.identifier.gro","3142168"],["dc.identifier.isi","000332747500013"],["dc.identifier.pmid","24449030"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12826"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5288"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1439-7641"],["dc.relation.issn","1439-4235"],["dc.rights","CC BY-NC-ND 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/3.0"],["dc.title","Two-Color RESOLFT Nanoscopy with Green and Red Fluorescent Photochromic Proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9509"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","ACS Nano"],["dc.bibliographiccitation.lastpage","9521"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Konen, Timo"],["dc.contributor.author","Stumpf, Daniel"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Jansen, Isabelle"],["dc.contributor.author","Bossi, Mariano"],["dc.contributor.author","Weber, Michael"],["dc.contributor.author","Jensen, Nickels"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2021-08-12T07:44:53Z"],["dc.date.available","2021-08-12T07:44:53Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1021/acsnano.0c08207"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88319"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/34"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | Z01: Bioimaging Platform"],["dc.relation.eissn","1936-086X"],["dc.relation.issn","1936-0851"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.title","The Positive Switching Fluorescent Protein Padron2 Enables Live-Cell Reversible Saturable Optical Linear Fluorescence Transitions (RESOLFT) Nanoscopy without Sequential Illumination Steps"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article
    [["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Plant Direct"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Schnorrenberg, Sebastian"],["dc.contributor.author","Ghareeb, Hassan"],["dc.contributor.author","Frahm, Lars"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Jensen, Nickels"],["dc.contributor.author","Teichmann, Thomas"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Lipka, Volker"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2021-04-14T08:23:40Z"],["dc.date.available","2021-04-14T08:23:40Z"],["dc.date.issued","2020"],["dc.description.abstract","Abstract Subdiffraction super‐resolution fluorescence microscopy, or nanoscopy, has seen remarkable developments in the last two decades. Yet, for the visualization of plant cells, nanoscopy is still rarely used. In this study, we established RESOLFT nanoscopy on living green plant tissue. Live‐cell RESOLFT nanoscopy requires and utilizes comparatively low light doses and intensities to overcome the diffraction barrier. We generated a transgenic Arabidopsis thaliana plant line expressing the reversibly switchable fluorescent protein rsEGFP2 fused to the mammalian microtubule‐associated protein 4 (MAP4) in order to ubiquitously label the microtubule cytoskeleton. We demonstrate the use of RESOLFT nanoscopy for extended time‐lapse imaging of cortical microtubules in Arabidopsis leaf discs. By combining our approach with fluorescence lifetime gating, we were able to acquire live‐cell RESOLFT images even close to chloroplasts, which exhibit very strong autofluorescence. The data demonstrate the feasibility of subdiffraction resolution imaging in transgenic plant material with minimal requirements for sample preparation."],["dc.identifier.doi","10.1002/pld3.261"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81007"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2475-4455"],["dc.relation.issn","2475-4455"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited."],["dc.title","Live‐cell RESOLFT nanoscopy of transgenic Arabidopsis thaliana"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","5830"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.lastpage","7"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Geissbuehler, Stefan"],["dc.contributor.author","Sharipov, Azat"],["dc.contributor.author","Godinat, Aurélien"],["dc.contributor.author","Bocchio, Noelia L."],["dc.contributor.author","Sandoz, Patrick A."],["dc.contributor.author","Huss, Anja"],["dc.contributor.author","Jensen, Nickels A."],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","van der Goot, F. Gisou"],["dc.contributor.author","Dubikovskaya, Elena A."],["dc.contributor.author","Lasser, Theo"],["dc.contributor.author","Leutenegger, Marcel"],["dc.date.accessioned","2017-09-07T11:45:22Z"],["dc.date.available","2017-09-07T11:45:22Z"],["dc.date.issued","2014"],["dc.description.abstract","Super-resolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a classical widefield microscope. Previously, three-dimensional (3D) SOFI has been demonstrated by sequential imaging of multiple depth positions. Here we introduce a multiplexed imaging scheme for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. The simultaneous acquisition of multiple focal planes significantly reduces the acquisition time and thus the photobleaching. We demonstrate multiplane 3D SOFI by imaging fluorescently labelled cells over an imaged volume of up to 65 x 65 x 3.5 mu m(3) without depth scanning. In particular, we image the 3D network of mitochondria in fixed C2C12 cells immunostained with Alexa 647 fluorophores and the 3D vimentin structure in living Hela cells expressing the fluorescent protein Dreiklang."],["dc.identifier.doi","10.1038/ncomms6830"],["dc.identifier.gro","3142005"],["dc.identifier.isi","000347681600001"],["dc.identifier.pmid","25518894"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3490"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2041-1723"],["dc.title","Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","365"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","BIOspektrum"],["dc.bibliographiccitation.lastpage","367"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Andresen, Martin"],["dc.contributor.author","Jensen, Nickels A."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2019-07-30T13:23:43Z"],["dc.date.available","2019-07-30T13:23:43Z"],["dc.date.issued","2016"],["dc.description.abstract","Super-resolution microscopy, or nanoscopy, enables the visualization of cellular structures inaccessible to conventional light microscopy. RESOLFT nanoscopy is especially suitable for the imaging of living cells. It requires fluorescent proteins (RSFPs) that can be repeatedly switched between a fluorescent and a non-fluorescent state by light. We have analyzed the molecular switching mechanisms and generated a family of RSFPs specifically tailored for live cell RESOLFT nanoscopy."],["dc.identifier.doi","10.1007/s12268-016-0699-7"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62202"],["dc.language.iso","en"],["dc.relation.issn","0947-0867"],["dc.relation.issn","1868-6249"],["dc.title","Reversibel schaltbare fluoreszierende Proteine für die Superauflösung"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI