Options
Koch, Jan-Christoph
Loading...
Preferred name
Koch, Jan-Christoph
Official Name
Koch, Jan-Christoph
Alternative Name
Koch, Jan-C.
Koch, Jan Christoph
Koch, Jan C.
Koch, J. C.
Koch, J.-C.
Koch, J.
Main Affiliation
Now showing 1 - 10 of 68
2012Review [["dc.bibliographiccitation.firstpage","289"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Cell and Tissue Research"],["dc.bibliographiccitation.lastpage","311"],["dc.bibliographiccitation.volume","349"],["dc.contributor.author","Lingor, P."],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Bähr, M."],["dc.date.accessioned","2017-09-07T11:48:50Z"],["dc.date.available","2017-09-07T11:48:50Z"],["dc.date.issued","2012"],["dc.description.abstract","Degeneration of the axon is an important step in the pathomechanism of traumatic, inflammatory and degenerative neurological diseases. Increasing evidence suggests that axonal degeneration occurs early in the course of these diseases and therefore represents a promising target for future therapeutic strategies. We review the evidence for axonal destruction from pathological findings and animal models with particular emphasis on neurodegenerative and neurotraumatic disorders. We discuss the basic morphological and temporal modalities of axonal degeneration (acute, chronic and focal axonal degeneration and Wallerian degeneration). Based on the mechanistic concepts, we then delineate in detail the major molecular mechanisms that underlie the degenerative cascade, such as calcium influx, axonal transport, protein aggregation and autophagy. We finally concentrate on putative therapeutic targets based on the mechanistic prerequisites."],["dc.identifier.doi","10.1007/s00441-012-1362-3"],["dc.identifier.gro","3142506"],["dc.identifier.isi","000305405800023"],["dc.identifier.pmid","22392734"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8101"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8865"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0302-766X"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","Neurodegeneration; Neurotrauma; Wallerian degeneration; Calcium Autophagy"],["dc.title","Axonal degeneration as a therapeutic target in the CNS"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","72"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.bibliographiccitation.lastpage","86"],["dc.bibliographiccitation.volume","54"],["dc.contributor.author","Ribas, Vinicius Toledo"],["dc.contributor.author","Koch, Jan C."],["dc.contributor.author","Michel, Uwe"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Lingor, Paul"],["dc.date.accessioned","2018-01-09T11:14:21Z"],["dc.date.available","2018-01-09T11:14:21Z"],["dc.date.issued","2017"],["dc.description.abstract","Axonal degeneration is one of the initial steps in many traumatic and neurodegenerative central nervous system (CNS) disorders and thus a promising therapeutic target. A focal axonal lesion is followed by acute axonal degeneration (AAD) of both adjacent axon parts, before proximal and distal parts follow different degenerative fates at later time points. Blocking calcium influx by calcium channel inhibitors was previously shown to attenuate AAD after optic nerve crush (ONC). However, it remains unclear whether the attenuation of AAD also promotes consecutive axonal regeneration. Here, we used a rat ONC model to study the effects of calcium channel inhibitors on axonal degeneration, retinal ganglion cell (RGC) survival, and axonal regeneration, as well as the molecular mechanisms involved. Application of calcium channel inhibitors attenuated AAD after ONC and preserved axonal integrity as visualized by live imaging of optic nerve axons. Consecutively, this resulted in improved survival of RGCs and improved axonal regeneration at 28 days after ONC. We show further that calcium channel inhibition attenuated lesion-induced calpain activation in the proximity of the crush and inhibited the activation of the c-Jun N-terminal kinase pathway. Pro-survival signaling via Akt in the retina was also increased. Our data thus show that attenuation of AAD improves consecutive neuronal survival and axonal regeneration and that calcium channel inhibitors could be valuable tools for therapeutic interventions in traumatic and degenerative CNS disorders."],["dc.identifier.doi","10.1007/s12035-015-9676-2"],["dc.identifier.pmid","26732591"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11580"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1559-1182"],["dc.title","Attenuation of Axonal Degeneration by Calcium Channel Inhibitors Improves Retinal Ganglion Cell Survival and Regeneration After Optic Nerve Crush"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e1811"],["dc.bibliographiccitation.journal","Cell Death and Disease"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Bitow, F."],["dc.contributor.author","Haack, J."],["dc.contributor.author","D'Hedouville, Z."],["dc.contributor.author","Zhang, J-N"],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Michel, U."],["dc.contributor.author","Oliveira, L. M. A."],["dc.contributor.author","Jovin, T. M."],["dc.contributor.author","Liman, Jan"],["dc.contributor.author","Tatenhorst, L."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Lingor, P."],["dc.date.accessioned","2017-09-07T11:43:42Z"],["dc.date.available","2017-09-07T11:43:42Z"],["dc.date.issued","2015"],["dc.description.abstract","Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (alpha Syn-WT), a protein associated with PD, and its mutant variants alpha Syn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of alpha Syn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of alpha Syn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with alpha Syn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all alpha Syn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by alpha Syn-WT and -A53T but not by alpha Syn-A30P. Correspondingly, colocalization of alpha Syn and the autophagy marker LC3 was reduced for alpha Syn-A30P compared with the other alpha Syn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both alpha Syn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that alpha Syn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1038/cddis.2015.169"],["dc.identifier.gro","3141868"],["dc.identifier.isi","000358788800011"],["dc.identifier.pmid","26158517"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12015"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1967"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2041-4889"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Central nervous system; Molecular neuroscience; Parkinson's disease"],["dc.title","Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3472"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","FEBS Journal"],["dc.bibliographiccitation.lastpage","3483"],["dc.bibliographiccitation.volume","278"],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Barski, E."],["dc.contributor.author","Lingor, P."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Michel, U."],["dc.date.accessioned","2017-09-07T11:43:25Z"],["dc.date.available","2017-09-07T11:43:25Z"],["dc.date.issued","2011"],["dc.description.abstract","Repressor element-1 silencing transcription factor (REST) is a transcriptional repressor of neuron-specific genes that binds to a conserved DNA element, the neuron restrictive silencer element (NRSE/RE1). Interestingly, increased REST activity is found in several neurological diseases like Huntington's disease and cerebral ischemia. Recently, it was shown that NRSE dsRNA, a double-stranded non-coding RNA can bind to REST during a defined period of neuronal differentiation, and thereby changes REST from a transcriptional repressor to an activator of neuron-specific genes. Here, we analyzed the effects of NRSE dsRNA expression in primary retinal ganglion cells. We found that NRSE dsRNA expression vectors significantly enhance neurite outgrowth even when axonal degeneration is induced by neurotrophin deprivation. Transfection of HEK cells with NRSE dsRNA-expressing vectors altered their morphology leading to the formation of thin processes and induced the expression of neurofilament-68. Surprisingly, control vectors containing REST-binding sites, but not expressing NRSE dsRNA, resulted in the same effects, also in the retinal ganglion cell model. Reporter assays and retention of REST in the cytoplasm with a labeled NRSE/RE1-containing plasmid incapable of entering the nucleus suggest that sequestration of REST in the cytoplasm is the reason for the observed effects. No evidence for a biological function of NRSE dsRNA could be found in these models. We conclude that sequestration of REST leads to enhanced neurite outgrowth in retinal ganglion cells and that an increased activity of REST, as it is found in several neurodegenerative diseases, can be effectively modulated by sequestration of REST with plasmids containing NRSE/RE1 sites."],["dc.identifier.doi","10.1111/j.1742-4658.2011.08269.x"],["dc.identifier.gro","3142674"],["dc.identifier.isi","000294810600024"],["dc.identifier.pmid","21790997"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/104"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1742-464X"],["dc.title","Plasmids containing NRSE/RE1 sites enhance neurite outgrowth of retinal ganglion cells via sequestration of REST independent of NRSE dsRNA expression"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Journal Article [["dc.bibliographiccitation.firstpage","1516"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Neurology"],["dc.bibliographiccitation.lastpage","1525"],["dc.bibliographiccitation.volume","266"],["dc.contributor.author","Dorst, Johannes"],["dc.contributor.author","Chen, Lu"],["dc.contributor.author","Rosenbohm, Angela"],["dc.contributor.author","Dreyhaupt, Jens"],["dc.contributor.author","Hübers, Annemarie"],["dc.contributor.author","Schuster, Joachim"],["dc.contributor.author","Weishaupt, Jochen H."],["dc.contributor.author","Kassubek, Jan"],["dc.contributor.author","Gess, Burkhard"],["dc.contributor.author","Meyer, Thomas"],["dc.contributor.author","Weyen, Ute"],["dc.contributor.author","Hermann, Andreas"],["dc.contributor.author","Winkler, Jürgen"],["dc.contributor.author","Grehl, Torsten"],["dc.contributor.author","Hagenacker, Tim"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Koch, Jan C."],["dc.contributor.author","Sperfeld, Anne"],["dc.contributor.author","Petri, Susanne"],["dc.contributor.author","Großkreutz, Julian"],["dc.contributor.author","Metelmann, Moritz"],["dc.contributor.author","Wolf, Joachim"],["dc.contributor.author","Winkler, Andrea S."],["dc.contributor.author","Klopstock, Thomas"],["dc.contributor.author","Boentert, Matthias"],["dc.contributor.author","Johannesen, Siw"],["dc.contributor.author","Storch, Alexander"],["dc.contributor.author","Schrank, Bertold"],["dc.contributor.author","Zeller, Daniel"],["dc.contributor.author","Liu, Xiao-lu"],["dc.contributor.author","Tang, Lu"],["dc.contributor.author","Fan, Dong-Sheng"],["dc.contributor.author","Ludolph, Albert C."],["dc.date.accessioned","2020-12-10T14:10:33Z"],["dc.date.available","2020-12-10T14:10:33Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1007/s00415-019-09290-4"],["dc.identifier.eissn","1432-1459"],["dc.identifier.issn","0340-5354"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70799"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Prognostic factors in ALS: a comparison between Germany and China"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2011Review [["dc.bibliographiccitation.artnumber","39"],["dc.bibliographiccitation.journal","Frontiers in Molecular Neuroscience"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Koch, J.-C."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Lingor, P."],["dc.date.accessioned","2017-09-07T11:45:03Z"],["dc.date.available","2017-09-07T11:45:03Z"],["dc.date.issued","2011"],["dc.description.abstract","Regenerative failure in the CNS largely depends on pronounced growth inhibitory signaling and reduced cellular survival after a lesion stimulus. One key mediator of growth inhibitory signaling is Rho-associated kinase (ROCK), which has been shown to modulate growth cone stability by regulation of actin dynamics. Recently, there is accumulating evidence the ROCK also plays a deleterious role for cellular survival. In this manuscript we illustrate that ROCK is involved in a variety of intracellular signaling pathways that comprise far more than those involved in neurite growth inhibition alone. Although ROCK function is currently studied in many different disease contexts, our review focuses on neurorestorative approaches in the CNS, especially in models of neurotrauma. Promising strategies to target ROCK by pharmacological small molecule inhibitors and RNAi approaches are evaluated for their outcome on regenerative growth and cellular protection both in preclinical and in clinical studies."],["dc.identifier.doi","10.3389/fnmol.2011.00039"],["dc.identifier.gro","3142797"],["dc.identifier.isi","000209370100036"],["dc.identifier.pmid","22065949"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8272"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/241"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1662-5099"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","ROCKing regeneration: Rho kinase inhibition as molecular target for neurorestoration"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3355"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Brain"],["dc.bibliographiccitation.lastpage","3370"],["dc.bibliographiccitation.volume","135"],["dc.contributor.author","Tönges, L."],["dc.contributor.author","Frank, T."],["dc.contributor.author","Tatenhorst, L."],["dc.contributor.author","Saal, K. A."],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Szego, E. M."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Weishaupt, J. H."],["dc.contributor.author","Lingor, P."],["dc.date.accessioned","2017-09-07T11:48:22Z"],["dc.date.available","2017-09-07T11:48:22Z"],["dc.date.issued","2012"],["dc.description.abstract","Axonal degeneration is one of the earliest features of Parkinson's disease pathology, which is followed by neuronal death in the substantia nigra and other parts of the brain. Inhibition of axonal degeneration combined with cellular neuroprotection therefore seem key to targeting an early stage in Parkinson's disease progression. Based on our previous studies in traumatic and neurodegenerative disease models, we have identified rho kinase as a molecular target that can be manipulated to disinhibit axonal regeneration and improve survival of lesioned central nervous system neurons. In this study, we examined the neuroprotective potential of pharmacological rho kinase inhibition mediated by fasudil in the in vitro 1-methyl-4-phenylpyridinium cell culture model and in the subchronic in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Application of fasudil resulted in a significant attenuation of dopaminergic cell loss in both paradigms. Furthermore, dopaminergic terminals were preserved as demonstrated by analysis of neurite network in vitro, striatal fibre density and by neurochemical analysis of the levels of dopamine and its metabolites in the striatum. Behavioural tests demonstrated a clear improvement in motor performance after fasudil treatment. The Akt survival pathway was identified as an important molecular mediator for neuroprotective effects of rho kinase inhibition in our paradigm. We conclude that inhibition of rho kinase using the clinically approved small molecule inhibitor fasudil may be a promising new therapeutic strategy for Parkinson's disease."],["dc.identifier.doi","10.1093/brain/aws254"],["dc.identifier.gro","3142444"],["dc.identifier.isi","000311644800021"],["dc.identifier.pmid","23087045"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9499"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8352"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0006-8950"],["dc.rights","CC BY-NC 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/3.0"],["dc.title","Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration"],["dc.bibliographiccitation.lastpage","7"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Koch, Jan C."],["dc.contributor.author","Statland, Jeffrey M."],["dc.contributor.author","Hussain, Sumaira"],["dc.contributor.author","Hennecke, Christiane"],["dc.contributor.author","Wuu, Joanne"],["dc.contributor.author","Langbein, Thomas"],["dc.contributor.author","Ahmed, Raees"],["dc.contributor.author","Günther, René"],["dc.contributor.author","Ilse, Benjamin"],["dc.contributor.author","Kassubek, Jan"],["dc.contributor.author","Kollewe, Katja"],["dc.contributor.author","Kuttler, Josua"],["dc.contributor.author","Leha, Andreas"],["dc.contributor.author","Lengenfeld, Teresa"],["dc.contributor.author","Meyer, Thomas"],["dc.contributor.author","Neuwirth, Christoph"],["dc.contributor.author","Tostmann, Ralf"],["dc.contributor.author","Benatar, Michael"],["dc.date.accessioned","2021-04-14T08:30:11Z"],["dc.date.available","2021-04-14T08:30:11Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1080/21678421.2021.1879866"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83141"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2167-9223"],["dc.relation.issn","2167-8421"],["dc.title","Challenges and opportunities for Multi-National Investigator-Initiated clinical trials for ALS: European and United States collaborations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2014Journal Article Research Paper [["dc.bibliographiccitation.artnumber","304"],["dc.bibliographiccitation.journal","Frontiers in Neuroscience"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Günther, R."],["dc.contributor.author","Saal, K.-A."],["dc.contributor.author","Suhr, M."],["dc.contributor.author","Scheer, D."],["dc.contributor.author","Koch, J. C."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Lingor, P."],["dc.contributor.author","Tönges, L."],["dc.date.accessioned","2017-09-07T11:45:27Z"],["dc.date.available","2017-09-07T11:45:27Z"],["dc.date.issued","2014"],["dc.description.abstract","Disease progression in amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons and their axons which results in a progressive muscle weakness and ultimately death from respiratory failure. The only approved drug, riluzole, lacks clinical efficacy so that more potent treatment options are needed. We have identified rho kinase (ROCK) as a target, which can be manipulated to beneficially influence disease progression in models of ALS. Here, we examined the therapeutic potential of the ROCK inhibitor Y-27632 in both an in vitro and in an in vivo paradigm of motoneuron disease. Application of Y-27632 to primary motoneurons in vitro increased survival and promoted neunte outgrowth. In vivo, SOD1G93A mice were orally treated with 2 or 30 mg/kg body weight of Y-27632. The 2 mg/kg group did not benefit from Y-27632 treatment, whereas treatment with 30 mg/kg resulted in improved motor function in male mice. Female mice showed only limited improvement and overall survival was not modified in both 2 and 30 mg/kg Y-27632 groups. In conclusion, we provide evidence that inhibition of ROCK by Y-27632 is neuroprotective in vitro but has limited beneficial effects in vivo being restricted to male mice. Therefore, the evaluation of ROCK inhibitors in preclinical models of ALS should always take gender differences into account."],["dc.format.extent","9"],["dc.identifier.doi","10.3389/fnins.2014.00304"],["dc.identifier.gro","3142033"],["dc.identifier.isi","000346516800001"],["dc.identifier.pmid","25339858"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11029"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3801"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1662-453X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The rho kinase inhibitor Y-27632 improves motor performance in male SOD1(G93A) mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Journal Article [["dc.bibliographiccitation.artnumber","e1994"],["dc.bibliographiccitation.journal","Cell Death and Disease"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Oliveira, Luis M. A."],["dc.contributor.author","Falomir-Lockhart, Lisandro J."],["dc.contributor.author","Botelho, Michelle Gralle"],["dc.contributor.author","Lin, K-H"],["dc.contributor.author","Wales, Pauline"],["dc.contributor.author","Koch, Jan Christoph"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Taschenberger, Holger"],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Schuele, B."],["dc.contributor.author","Arndt-Jovin, Donna J."],["dc.contributor.author","Jovin, Thomas M."],["dc.date.accessioned","2018-11-07T09:49:15Z"],["dc.date.available","2018-11-07T09:49:15Z"],["dc.date.issued","2015"],["dc.description.abstract","We have assessed the impact of alpha-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of alpha-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction."],["dc.identifier.doi","10.1038/cddis.2015.318"],["dc.identifier.isi","000367155300027"],["dc.identifier.pmid","26610207"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12755"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35470"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2041-4889"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Elevated alpha-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS