Options
Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus
ISSN
1471-2229
Date Issued
2011
Author(s)
DOI
10.1186/1471-2229-11-121
Abstract
Background: In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results: Root exudates were collected from plants grown in hydroponics under low-and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z) from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions: Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin.
File(s)
No Thumbnail Available
Name
1471-2229-11-121.pdf
Size
510.81 KB
Checksum (MD5)
ae7c7e06de6dab0ff896f6887f05fc49