Options
The Toxoplasma gondii type-II NADH dehydrogenase TgNDH2-I is inhibited by 1-hydroxy-2-alkyl-4(1H)quinolones
ISSN
0005-2728
Date Issued
2008
Author(s)
DOI
10.1016/j.bbabio.2008.08.006
Abstract
The apicomplexan parasite Toxoplasma gondii does not possess complex I of the mitochondrial respiratory chain, but has two genes encoding rotenone-insensitive, non-proton pumping type-II NADH dehydrogenases (NDH2s). The absence of such "alternative" NADH dehydrogenases in the human host defines these enzymes as potential drug targets. TgNDH2-I and TgNDH2-II are constitutively expressed in tachyzoites and bradyzoites and are localized to the mitochondrion as shown by epitope tagging. Functional expression of TgNDH2-I in the yeast Yarrowia lipolytica as an internal enzyme, with the active site facing the mitochondrial matrix, permitted growth in the presence of the complex I inhibitor DQA. Bisubstrate kinetics of TgNDH2-I measured within Y. lipolytica mitochondrial membrane preparations were in accordance with a ping-pong Using inhibition kinetics we demonstrate here that 1-hydroxy-2-alkyl-4(1)quinolones with long mechanism. alkyl chains of C(12) (HDQ) and C(14) are high affinity inhibitors for TgNDH2-I, while compounds with shorter side chains (C(5) and C(6)) displayed significantly higher IC(50) values. The efficiency of the various quinolone derivatives to inhibit TgNDH2-I enzyme activity mirrors their inhibitory potency in vivo, suggesting that a long acyl site chain is critical for the inhibitory potential of these compounds. (C) 2008 Elsevier B.V. All rights reserved.