Options
Drag reduction in boiling Taylor-Couette turbulence
ISSN
0022-1120
1469-7645
Date Issued
2019-09-09
Author(s)
DOI
10.1017/jfm.2019.758
Abstract
We create a highly controlled lab environment-accessible to both global and local monitoring-to analyse turbulent boiling flows and in particular their shear stress in a statistically stationary state. Namely, by precisely monitoring the drag of strongly turbulent Taylor-Couette flow (the flow in between two co-axially rotating cylinders, Reynolds number $\textrm{Re}\approx 10^6$) during its transition from non-boiling to boiling, we show that the intuitive expectation, namely that a few volume percent of vapor bubbles would correspondingly change the global drag by a few percent, is wrong. Rather, we find that for these conditions a dramatic global drag reduction of up to 45% occurs. We connect this global result to our local observations, showing that for major drag reduction the vapor bubble deformability is crucial, corresponding to Weber numbers larger than one. We compare our findings with those for turbulent flows with gas bubbles, which obey very different physics than vapor bubbles. Nonetheless, we find remarkable similarities and explain these.