Options
Lohse, Detlef
Loading...
Preferred name
Lohse, Detlef
Official Name
Lohse, Detlef
Alternative Name
Lohse, D.
Main Affiliation
ORCID
Now showing 1 - 10 of 26
2016Journal Article [["dc.bibliographiccitation.firstpage","850"],["dc.bibliographiccitation.journal","Journal of Fluid Mechanics"],["dc.bibliographiccitation.lastpage","868"],["dc.bibliographiccitation.volume","792"],["dc.contributor.author","Bouwhuis, Wilco"],["dc.contributor.author","Huang, Xin"],["dc.contributor.author","Chan, Chon U."],["dc.contributor.author","Frommhold, Philipp Erhard"],["dc.contributor.author","Ohl, Claus-Dieter"],["dc.contributor.author","Lohse, Detlef"],["dc.contributor.author","Snoeijer, Jacco H."],["dc.contributor.author","van der Meer, Devaraj"],["dc.date.accessioned","2018-11-07T10:15:42Z"],["dc.date.available","2018-11-07T10:15:42Z"],["dc.date.issued","2016"],["dc.description.abstract","A train of high-speed microdrops impacting on a liquid pool can create a very deep and narrow cavity, reaching depths more than 1000 times the size of the individual drops. The impact of such a droplet train is studied numerically using boundary integral simulations. In these simulations, we solve the potential flow in the pool and in the impacting drops, taking into account the influence of liquid inertia, gravity and surface tension. We show that for microdrops the cavity shape and maximum depth primarily depend on the balance of inertia and surface tension and discuss how these are influenced by the spacing between the drops in the train. Finally, we derive simple scaling laws for the cavity depth and width."],["dc.identifier.doi","10.1017/jfm.2016.105"],["dc.identifier.isi","000379218400001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40864"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cambridge Univ Press"],["dc.relation.issn","1469-7645"],["dc.relation.issn","0022-1120"],["dc.title","Impact of a high-speed train of microdrops on a liquid pool"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2022Journal Article [["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","129"],["dc.contributor.author","Zhang, Bin"],["dc.contributor.author","Sanjay, Vatsal"],["dc.contributor.author","Shi, Songlin"],["dc.contributor.author","Zhao, Yinggang"],["dc.contributor.author","Lv, Cunjing"],["dc.contributor.author","Feng, Xi-Qiao"],["dc.contributor.author","Lohse, Detlef"],["dc.date.accessioned","2022-10-04T10:21:53Z"],["dc.date.available","2022-10-04T10:21:53Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809"],["dc.description.sponsorship"," Tsinghua University http://dx.doi.org/10.13039/501100004147"],["dc.description.sponsorship"," H2020 European Research Council http://dx.doi.org/10.13039/100010663"],["dc.identifier.doi","10.1103/PhysRevLett.129.104501"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114528"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.rights.uri","https://link.aps.org/licenses/aps-default-license"],["dc.title","Impact Forces of Water Drops Falling on Superhydrophobic Surfaces"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article [["dc.bibliographiccitation.firstpage","230"],["dc.bibliographiccitation.issue","3-4"],["dc.bibliographiccitation.journal","Macromolecular Materials and Engineering"],["dc.bibliographiccitation.lastpage","237"],["dc.bibliographiccitation.volume","296"],["dc.contributor.author","van den Berg, Thomas H."],["dc.contributor.author","Wormgoor, Willem D."],["dc.contributor.author","Luther, Stefan"],["dc.contributor.author","Lohse, Detlef"],["dc.date.accessioned","2022-03-01T11:46:22Z"],["dc.date.available","2022-03-01T11:46:22Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1002/mame.201000339"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103648"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","1438-7492"],["dc.title","Phase-Sensitive Constant Temperature Anemometry"],["dc.title.alternative","Phase-Sensitive Constant Temperature Anemometry"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.artnumber","084501"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","128"],["dc.contributor.author","Ahlers, Guenter"],["dc.contributor.author","Bodenschatz, Eberhard"],["dc.contributor.author","Hartmann, Robert"],["dc.contributor.author","He, Xiaozhou"],["dc.contributor.author","Lohse, Detlef"],["dc.contributor.author","Reiter, Philipp"],["dc.contributor.author","Stevens, Richard J. A. M."],["dc.contributor.author","Verzicco, Roberto"],["dc.contributor.author","Wedi, Marcel"],["dc.contributor.author","Weiss, Stephan"],["dc.contributor.author","Shishkina, Olga"],["dc.date.accessioned","2022-04-01T10:00:29Z"],["dc.date.available","2022-04-01T10:00:29Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1103/PhysRevLett.128.084501"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105440"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Aspect Ratio Dependence of Heat Transfer in a Cylindrical Rayleigh-Bénard Cell"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019-09-09Journal Article [["dc.bibliographiccitation.firstpage","104"],["dc.bibliographiccitation.journal","Journal of Fluid Mechanics"],["dc.bibliographiccitation.lastpage","118"],["dc.bibliographiccitation.volume","881"],["dc.contributor.author","Ezeta, Rodrigo"],["dc.contributor.author","Bakhuis, Dennis"],["dc.contributor.author","Huisman, Sander G."],["dc.contributor.author","Sun, Chao"],["dc.contributor.author","Lohse, Detlef"],["dc.date.accessioned","2020-04-03T14:19:07Z"],["dc.date.available","2020-04-03T14:19:07Z"],["dc.date.issued","2019-09-09"],["dc.description.abstract","We create a highly controlled lab environment-accessible to both global and local monitoring-to analyse turbulent boiling flows and in particular their shear stress in a statistically stationary state. Namely, by precisely monitoring the drag of strongly turbulent Taylor-Couette flow (the flow in between two co-axially rotating cylinders, Reynolds number $\\textrm{Re}\\approx 10^6$) during its transition from non-boiling to boiling, we show that the intuitive expectation, namely that a few volume percent of vapor bubbles would correspondingly change the global drag by a few percent, is wrong. Rather, we find that for these conditions a dramatic global drag reduction of up to 45% occurs. We connect this global result to our local observations, showing that for major drag reduction the vapor bubble deformability is crucial, corresponding to Weber numbers larger than one. We compare our findings with those for turbulent flows with gas bubbles, which obey very different physics than vapor bubbles. Nonetheless, we find remarkable similarities and explain these."],["dc.identifier.arxiv","1909.03944v1"],["dc.identifier.doi","10.1017/jfm.2019.758"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63668"],["dc.relation.issn","0022-1120"],["dc.relation.issn","1469-7645"],["dc.title","Drag reduction in boiling Taylor-Couette turbulence"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article [["dc.bibliographiccitation.artnumber","114501"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","109"],["dc.contributor.author","Ahlers, Guenter"],["dc.contributor.author","Bodenschatz, Eberhard"],["dc.contributor.author","Funfschilling, Denis"],["dc.contributor.author","Grossmann, Siegfried"],["dc.contributor.author","He, Xiaozhou"],["dc.contributor.author","Lohse, Detlef"],["dc.contributor.author","Stevens, Richard J. A. M."],["dc.contributor.author","Verzicco, Roberto"],["dc.date.accessioned","2018-11-07T09:05:53Z"],["dc.date.available","2018-11-07T09:05:53Z"],["dc.date.issued","2012"],["dc.description.abstract","We report results for the temperature profiles of turbulent Rayleigh-Benard convection (RBC) in the interior of a cylindrical sample of aspect ratio Gamma equivalent to D/L = 0.50 (D and L are the diameter and height, respectively). Both in the classical and in the ultimate state of RBC we find that the temperature varies as A X ln(z/L) + B, where z is the distance from the bottom or top plate. In the classical state, the coefficient A decreases in the radial direction as the distance from the side wall increases. For the ultimate state, the radial dependence of A has not yet been determined. These findings are based on experimental measurements over the Rayleigh-number range 4 X 10(12) less than or similar to Ra less than or similar to 10(15) for a Prandtl number Pr similar or equal to 0.8 and on direct numerical simulation at Ra = 2 X 10(12), 2 X 10(11), and 2 X 10(10), all for Pr = 0.7."],["dc.identifier.doi","10.1103/PhysRevLett.109.114501"],["dc.identifier.isi","000308736000006"],["dc.identifier.pmid","23005635"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25427"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Physical Soc"],["dc.relation.issn","0031-9007"],["dc.title","Logarithmic Temperature Profiles in Turbulent Rayleigh-Benard Convection"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.firstpage","5744"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Langmuir"],["dc.bibliographiccitation.lastpage","5754"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Peng, Shuhua"],["dc.contributor.author","Dević, Ivan"],["dc.contributor.author","Tan, Huanshu"],["dc.contributor.author","Lohse, Detlef"],["dc.contributor.author","Zhang, Xuehua"],["dc.date.accessioned","2021-06-01T10:50:28Z"],["dc.date.available","2021-06-01T10:50:28Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1021/acs.langmuir.6b01153"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86672"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1520-5827"],["dc.relation.issn","0743-7463"],["dc.title","How a Surface Nanodroplet Sits on the Rim of a Microcap"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","259402"],["dc.bibliographiccitation.issue","25"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Zhu, Xiaojue"],["dc.contributor.author","Varghese, Mathai"],["dc.contributor.author","Stevens, Richard J. A. M."],["dc.contributor.author","Verzicco, Roberto"],["dc.contributor.author","Lohse, Detlef"],["dc.date.accessioned","2020-04-03T13:18:11Z"],["dc.date.available","2020-04-03T13:18:11Z"],["dc.date.issued","2019"],["dc.description.abstract","Reply to the comment by Doering et al. in Phys. Rev. Lett. 123, 259401 (2019)"],["dc.identifier.arxiv","1912.09852v1"],["dc.identifier.doi","10.1103/PhysRevLett.123.259402"],["dc.identifier.pmid","31922772"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63621"],["dc.language.iso","en"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.relation.issn","1079-7114"],["dc.title","Zhu et al. Reply"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","28"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Microsystems & Nanoengineering"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Le-The, Hai"],["dc.contributor.author","Küchler, Christian"],["dc.contributor.author","van den Berg, Albert"],["dc.contributor.author","Bodenschatz, Eberhard"],["dc.contributor.author","Lohse, Detlef"],["dc.contributor.author","Krug, Dominik"],["dc.date.accessioned","2022-06-08T07:58:41Z"],["dc.date.available","2022-06-08T07:58:41Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract We report a robust fabrication method for patterning freestanding Pt nanowires for use as thermal anemometry probes for small-scale turbulence measurements. Using e-beam lithography, high aspect ratio Pt nanowires (~300 nm width, ~70 µm length, ~100 nm thickness) were patterned on the surface of oxidized silicon (Si) wafers. Combining wet etching processes with dry etching processes, these Pt nanowires were successfully released, rendering them freestanding between two silicon dioxide (SiO 2 ) beams supported on Si cantilevers. Moreover, the unique design of the bridge holding the device allowed gentle release of the device without damaging the Pt nanowires. The total fabrication time was minimized by restricting the use of e-beam lithography to the patterning of the Pt nanowires, while standard photolithography was employed for other parts of the devices. We demonstrate that the fabricated sensors are suitable for turbulence measurements when operated in constant-current mode. A robust calibration between the output voltage and the fluid velocity was established over the velocity range from 0.5 to 5 m s −1 in a SF 6 atmosphere at a pressure of 2 bar and a temperature of 21 °C. The sensing signal from the nanowires showed negligible drift over a period of several hours. Moreover, we confirmed that the nanowires can withstand high dynamic pressures by testing them in air at room temperature for velocities up to 55 m s −1 ."],["dc.identifier.doi","10.1038/s41378-021-00255-0"],["dc.identifier.pii","255"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/110495"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-575"],["dc.relation.eissn","2055-7434"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Fabrication of freestanding Pt nanowires for use as thermal anemometry probes in turbulence measurements"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","5396"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Langmuir"],["dc.bibliographiccitation.lastpage","5402"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Encarnación Escobar, José M."],["dc.contributor.author","Dietrich, Erik"],["dc.contributor.author","Arscott, Steve"],["dc.contributor.author","Zandvliet, Harold J. W."],["dc.contributor.author","Zhang, Xuehua"],["dc.contributor.author","Lohse, Detlef"],["dc.date.accessioned","2021-06-01T10:50:28Z"],["dc.date.available","2021-06-01T10:50:28Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1021/acs.langmuir.8b00256"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86674"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1520-5827"],["dc.relation.issn","0743-7463"],["dc.title","Zipping-Depinning: Dissolution of Droplets on Micropatterned Concentric Rings"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI
- «
- 1 (current)
- 2
- 3
- »