Now showing 1 - 10 of 22
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","8471"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.bibliographiccitation.lastpage","8482"],["dc.bibliographiccitation.volume","46"],["dc.contributor.author","Lavdovskaia, Elena"],["dc.contributor.author","Kolander, Elisa"],["dc.contributor.author","Steube, Emely"],["dc.contributor.author","Mai, Mandy Mong-Quyen"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.date.accessioned","2020-12-10T18:19:35Z"],["dc.date.available","2020-12-10T18:19:35Z"],["dc.date.issued","2018"],["dc.description.abstract","The human mitochondrial translation apparatus, which synthesizes the core subunits of the oxidative phosphorylation system, is of central interest as mutations in several genes encoding for mitoribosomal proteins or translation factors cause severe human diseases. Little is known, how this complex machinery assembles from nuclear-encoded protein components and mitochondrial-encoded RNAs, and which ancillary factors are required to form a functional mitoribosome. We have characterized the human Obg protein GTPBP10, which associates specifically with the mitoribosomal large subunit at a late maturation state. Defining its interactome, we have shown that GTPBP10 is in a complex with other mtLSU biogenesis factors including mitochondrial RNA granule components, the 16S rRNA module and late mtLSU assembly factors such as MALSU1, SMCR7L, MTERF4 and NSUN4. GTPBP10 deficiency leads to a drastic reduction in 55S monosome formation resulting in defective mtDNA-expression and in a decrease in cell growth. Our results suggest that GTPBP10 is a ribosome biogenesis factor of the mtLSU required for late stages of maturation."],["dc.identifier.doi","10.1093/nar/gky701"],["dc.identifier.pmid","30085210"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75300"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/36"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY-NC 4.0"],["dc.title","The human Obg protein GTPBP10 is involved in mitoribosomal biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article
    [["dc.bibliographiccitation.journal","Frontiers in Microbiology"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Wesolowska, Maria T."],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Lightowlers, Robert N."],["dc.contributor.author","Chrzanowska-Lightowlers, Zofia M. A."],["dc.date.accessioned","2022-03-01T11:44:22Z"],["dc.date.available","2022-03-01T11:44:22Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.3389/fmicb.2014.00374"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103008"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1664-302X"],["dc.title","Overcoming stalled translation in human mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Report
    [["dc.contributor.author","Kolanczyk, Mateusz"],["dc.contributor.author","Pech, Markus"],["dc.contributor.author","Zemojtel, Tomasz"],["dc.contributor.author","Yamamoto, Hiroshi"],["dc.contributor.author","Mikula, Ivan"],["dc.contributor.author","Calvaruso, Maria-Antonietta"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Fischer-Zirnsak, Björn"],["dc.contributor.author","Ritz, Anita"],["dc.contributor.author","Kossler, Nadine"],["dc.contributor.author","Martasek, Pavel"],["dc.contributor.author","Spoerle, Ralf"],["dc.contributor.author","Smeitink, Jan"],["dc.contributor.author","Kornak, Uwe"],["dc.contributor.author","Vingron, Martin"],["dc.contributor.author","Nijtmans, Leo"],["dc.contributor.author","Nierhaus, Knud"],["dc.contributor.author","Lightowlers, Robert"],["dc.contributor.author","Schuelke, Markus"],["dc.contributor.author","Mundlos, Stefan"],["dc.date.accessioned","2020-06-19T09:54:57Z"],["dc.date.available","2020-06-19T09:54:57Z"],["dc.date.issued","2011"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66547"],["dc.title","Trophoblast Development Is Compromised By The Mitochondrial Dysfunction"],["dc.type","report"],["dc.type.internalPublication","no"],["dspace.entity.type","Publication"]]
    Details
  • 2020-01-07Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e48833"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","EMBO Reports"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Wang, Cong"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Liu, Fan"],["dc.contributor.author","Zhu, Ying"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2020-04-29T13:50:23Z"],["dc.date.available","2020-04-29T13:50:23Z"],["dc.date.issued","2020-01-07"],["dc.description.abstract","The mitochondrial genome encodes for thirteen core subunits of the oxidative phosphorylation system. These proteins assemble with imported proteins in a modular manner into stoichiometric enzyme complexes. Assembly factors assist in these biogenesis processes by providing co-factors or stabilizing transient assembly stages. However, how expression of the mitochondrial-encoded subunits is regulated to match the availability of nuclear-encoded subunits is still unresolved. Here, we address the function of MITRAC15/COA1, a protein that participates in complex I biogenesis and complex IV biogenesis. Our analyses of a MITRAC15 knockout mutant reveal that MITRAC15 is required for translation of the mitochondrial-encoded complex I subunit ND2. We find that MITRAC15 is a constituent of a ribosome-nascent chain complex during ND2 translation. Chemical crosslinking analyses demonstrate that binding of the ND2-specific assembly factor ACAD9 to the ND2 polypeptide occurs at the C-terminus and thus downstream of MITRAC15. Our analyses demonstrate that expression of the founder subunit ND2 of complex I undergoes regulation. Moreover, a ribosome-nascent chain complex with MITRAC15 is at the heart of this process."],["dc.identifier.doi","10.15252/embr.201948833"],["dc.identifier.pmid","31721420"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16910"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64485"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/13"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1469-3178"],["dc.relation.issn","1469-221X"],["dc.relation.issn","1469-3178"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome-nascent chain complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e32572"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Wang, Cong"],["dc.contributor.author","Chowdhury, Arpita"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-05-03T09:03:52Z"],["dc.date.accessioned","2021-10-27T13:21:07Z"],["dc.date.available","2018-05-03T09:03:52Z"],["dc.date.available","2021-10-27T13:21:07Z"],["dc.date.issued","2018"],["dc.description.abstract","Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines."],["dc.identifier.doi","10.7554/eLife.32572"],["dc.identifier.gro","3142446"],["dc.identifier.pmid","29381136"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15212"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91995"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/200"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.issn","2050-084X"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","284"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Trends in Cell Biology"],["dc.bibliographiccitation.lastpage","297"],["dc.bibliographiccitation.volume","31"],["dc.contributor.author","Maiti, Priyanka"],["dc.contributor.author","Lavdovskaia, Elena"],["dc.contributor.author","Barrientos, Antoni"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.date.accessioned","2021-04-14T08:28:48Z"],["dc.date.available","2021-04-14T08:28:48Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.tcb.2020.12.008"],["dc.identifier.pmid","33419649"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82707"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/125"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.issn","0962-8924"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.title","Role of GTPases in Driving Mitoribosome Assembly"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","3672"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Lavdovskaia, Elena"],["dc.contributor.author","Nadler, Franziska"],["dc.contributor.author","Hanitsch, Elisa"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.date.accessioned","2021-07-05T15:00:30Z"],["dc.date.available","2021-07-05T15:00:30Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint."],["dc.description.sponsorship","Open-Access-Finanzierung durch die Universitätsmedizin Göttingen 2021"],["dc.identifier.doi","10.1038/s41467-021-23702-y"],["dc.identifier.pii","23702"],["dc.identifier.pmid","34135319"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87838"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/316"],["dc.language.iso","en"],["dc.notes.intern","DOI Import DOI-Import GROB-441"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.rights","CC BY 4.0"],["dc.title","Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Preprint
    [["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Lavdovskaia, Elena"],["dc.contributor.author","Nadler, Franziska"],["dc.contributor.author","Hanitsch, Elisa"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.date.accessioned","2022-02-23T16:35:33Z"],["dc.date.available","2022-02-23T16:35:33Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1101/2021.03.17.435767"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/100377"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/241"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.title","Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","471"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","310"],["dc.bibliographiccitation.volume","167"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Wang, Cong"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dennerlein, Sven"],["dc.date.accessioned","2017-09-07T11:44:33Z"],["dc.date.available","2017-09-07T11:44:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits."],["dc.identifier.doi","10.1016/j.cell.2016.09.003"],["dc.identifier.gro","3141603"],["dc.identifier.isi","000386343100022"],["dc.identifier.pmid","27693358"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13996"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/124"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1097-4172"],["dc.relation.issn","0092-8674"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2022Journal Article
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Nadler, Franziska"],["dc.contributor.author","Lavdovskaia, Elena"],["dc.contributor.author","Krempler, Angelique"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.date.accessioned","2022-12-01T08:30:49Z"],["dc.date.available","2022-12-01T08:30:49Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\r\n Translation termination requires release factors that read a STOP codon in the decoding center and subsequently facilitate the hydrolysis of the nascent peptide chain from the peptidyl tRNA within the ribosome. In human mitochondria eleven open reading frames terminate in the standard UAA or UAG STOP codon, which can be recognized by mtRF1a, the proposed major mitochondrial release factor. However, two transcripts encoding for COX1 and ND6 terminate in the non-conventional AGA or AGG codon, respectively. How translation termination is achieved in these two cases is not known. We address this long-standing open question by showing that the non-canonical release factor mtRF1 is a specialized release factor that triggers COX1 translation termination, while mtRF1a terminates the majority of other mitochondrial translation events including the non-canonical ND6. Loss of mtRF1 leads to isolated COX deficiency and activates the mitochondrial ribosome-associated quality control accompanied by the degradation of COX1 mRNA to prevent an overload of the ribosome rescue system. Taken together, these results establish the role of mtRF1 in mitochondrial translation, which had been a mystery for decades, and lead to a comprehensive picture of translation termination in human mitochondria."],["dc.identifier.doi","10.1038/s41467-022-34088-w"],["dc.identifier.pii","34088"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/117991"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","2041-1723"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Human mtRF1 terminates COX1 translation and its ablation induces mitochondrial ribosome-associated quality control"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI