Now showing 1 - 4 of 4
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","6965"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Sprenger, Julia U."],["dc.contributor.author","Perera, Ruwan K."],["dc.contributor.author","Steinbrecher, Julia H."],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.date.accessioned","2017-09-07T11:44:27Z"],["dc.date.available","2017-09-07T11:44:27Z"],["dc.date.issued","2015"],["dc.description.abstract","3',5'-cyclic adenosine monophosphate (cAMP) is an ubiquitous second messenger that regulates physiological functions by acting in distinct subcellular microdomains. Although several targeted cAMP biosensors are developed and used in single cells, it is unclear whether such biosensors can be successfully applied in vivo, especially in the context of disease. Here, we describe a transgenic mouse model expressing a targeted cAMP sensor and analyse microdomain-specific second messenger dynamics in the vicinity of the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). We demonstrate the bio-compatibility of this targeted sensor and its potential for real-time monitoring of compartmentalized cAMP signalling in adult cardiomyocytes isolated from a healthy mouse heart and from an in vivo cardiac disease model. In particular, we uncover the existence of a phos-phodiesterase-dependent receptor-microdomain communication, which is affected in hypertrophy, resulting in reduced beta-adrenergic receptor-cAMP signalling to SERCA."],["dc.identifier.doi","10.1038/ncomms7965"],["dc.identifier.gro","3141928"],["dc.identifier.isi","000353704700017"],["dc.identifier.pmid","25917898"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2634"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/103"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A01: cAMP- und cGMP- Mikrodomänen bei Herzhypertrophie und Insuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG L. Maier (Experimentelle Kardiologie)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.title","In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1235"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.lastpage","1245"],["dc.bibliographiccitation.volume","114"],["dc.contributor.author","Götz, Konrad R."],["dc.contributor.author","Sprenger, Julia U."],["dc.contributor.author","Perera, Ruwan K."],["dc.contributor.author","Steinbrecher, Julia H."],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.contributor.author","Kuhn, Michaela"],["dc.contributor.author","Gorelik, Julia"],["dc.contributor.author","Balligand, Jean-Luc"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.date.accessioned","2018-05-07T12:50:07Z"],["dc.date.available","2018-05-07T12:50:07Z"],["dc.date.issued","2014"],["dc.description.abstract","3',5'-Cyclic guanosine monophosphate (cGMP) is an important second messenger that regulates cardiac contractility and protects the heart from hypertrophy. However, because of the lack of real-time imaging techniques, specific subcellular mechanisms and spatiotemporal dynamics of cGMP in adult cardiomyocytes are not well understood."],["dc.identifier.doi","10.1161/CIRCRESAHA.114.302437"],["dc.identifier.pmid","24599804"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/14629"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/20"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A01: cAMP- und cGMP- Mikrodomänen bei Herzhypertrophie und Insuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.doi","10.1161/CIRCRESAHA.114.302437"],["dc.relation.eissn","1524-4571"],["dc.relation.issn","1524-4571"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.title","Transgenic mice for real-time visualization of cGMP in intact adult cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1304"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.lastpage","1311"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Perera, Ruwan K."],["dc.contributor.author","Sprenger, Julia U."],["dc.contributor.author","Steinbrecher, Julia H."],["dc.contributor.author","Hübscher, Daniela"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.contributor.author","Abesser, Marco"],["dc.contributor.author","Schuh, Kai"],["dc.contributor.author","El-Armouche, Ali"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.date.accessioned","2018-05-07T11:53:29Z"],["dc.date.available","2018-05-07T11:53:29Z"],["dc.date.issued","2015"],["dc.description.abstract","Cyclic nucleotides are second messengers that regulate cardiomyocyte function through compartmentalized signaling in discrete subcellular microdomains. However, the role of different microdomains and their changes in cardiac disease are not well understood."],["dc.identifier.doi","10.1161/CIRCRESAHA.116.306082"],["dc.identifier.pmid","25688144"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/14623"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/82"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A01: cAMP- und cGMP- Mikrodomänen bei Herzhypertrophie und Insuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.doi","10.1161/CIRCRESAHA.116.306082"],["dc.relation.eissn","1524-4571"],["dc.relation.issn","1524-4571"],["dc.relation.workinggroup","RG El-Armouche"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.title","Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2012Journal Article
    [["dc.bibliographiccitation.artnumber","UNSP e4081"],["dc.bibliographiccitation.issue","66"],["dc.bibliographiccitation.journal","Journal of Visualized Experiments"],["dc.contributor.author","Sprenger, Julia U."],["dc.contributor.author","Perera, Ruwan K."],["dc.contributor.author","Goetz, Konrad R."],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.date.accessioned","2018-11-07T09:08:03Z"],["dc.date.available","2018-11-07T09:08:03Z"],["dc.date.issued","2012"],["dc.description.abstract","Forster resonance energy transfer (FRET) microscopy continues to gain increasing interest as a technique for real-time monitoring of biochemical and signaling events in live cells and tissues. Compared to classical biochemical methods, this novel technology is characterized by high temporal and spatial resolution. FRET experiments use various genetically-encoded biosensors which can be expressed and imaged over time in situ or in vivo(1-2). Typical biosensors can either report protein-protein interactions by measuring FRET between a fluorophore-tagged pair of proteins or conformational changes in a single protein which harbors donor and acceptor fluorophores interconnected with a binding moiety for a molecule of interest(3-4). Bimolecular biosensors for protein-protein interactions include, for example, constructs designed to monitor G-protein activation in cells(5), while the unimolecular sensors measuring conformational changes are widely used to image second messengers such as calcium(6), cAMP(7-8), inositol phosphates(9) and cGMP(10-11). Here we describe how to build a customized epifluorescence FRET imaging system from single commercially available components and how to control the whole setup using the Micro-Manager freeware. This simple but powerful instrument is designed for routine or more sophisticated FRET measurements in live cells. Acquired images are processed using self-written plug-ins to visualize changes in FRET ratio in real-time during any experiments before being stored in a graphics format compatible with the build-in Image J freeware used for subsequent data analysis. This low-cost system is characterized by high flexibility and can be successfully used to monitor various biochemical events and signaling molecules by a plethora of available FRET biosensors in live cells and tissues. As an example, we demonstrate how to use this imaging system to perform real-time monitoring of cAMP in live 293A cells upon stimulation with a beta-adrenergic receptor agonist and blocker."],["dc.identifier.doi","10.3791/4081"],["dc.identifier.isi","000209225000028"],["dc.identifier.pmid","22929080"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25938"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Journal Of Visualized Experiments"],["dc.relation.issn","1940-087X"],["dc.title","FRET Microscopy for Real-time Monitoring of Signaling Events in Live Cells Using Unimolecular Biosensors"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS